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ABSTRACT: This paper used LB gas-solid two-phase model

to simulate the particle capture process of elliptical fiber, and (
investigate the capture efficiency by various capture )

mechanisms (diffusional, interception and inertial impaction (
mechanism) and motion of particles with distinct properties in ) Levenberg-Marquardt

the flow field. Through comparing with capture efficiency of

cylinder fiber, it can be found that the diffusional capture

efficiency of elliptical fiber is greater than that of cylinder fiber

because of its larger capture range in proportion to the aspect LB Levenberg-Marquardt
ratio. There are many factors (such as aspect ratio, place angle
and even particle diameter) may affect the capture efficiency of
interception and inertial impaction mechanism. When
interception or inertial impaction mechanism is dominated, the
capture efficiency of elliptical fiber is often higher than
cylinder fiber except the situation in which the major axis is
parallel to flow direction. A series of correction coefficients
was obtained by Levenberg-Marquardt algorithm. The
coefficients can be combined with the exist formulas of
cylinder fiber to calculate the capture efficiency of elliptical ( )

fiber easily.
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Fiberous filters with the advantage of high
collection efficiency of submicron particles are used in a
broad range of industries including chemical industry,
power and energy plants, automotive industry, portable
residential air cleaners and etc. So far, many researches
aim at cylinder fibers, few of them refer to the non-circle
fibers such as elliptical fibers. Compared with cylinder
fibers, elliptical fibers with the same volume have a
higher particle capture efficiency because their capture
range is larger.

The filtration process is complicated because of the
various deposition mechanisms (diffusion, interception,
inertial impaction, etc) of solid particles. Therefore,
Lattice Boltzmann two-phase flow model is used to
simulate the filtration process. The flow field is
computed by using the LB method with D2Q9 model
and the particle motion is calculated by CA probability
model. During each time-step, the solid particle located
in one lattice node may stay here or jump to a
nearest-neighbour node i with probability p; proportional
to the projection of its displacement Ax on the lattice

direction i (see Fig. 1):

p; =max{0,Ax/(e,dx)}, i=13,57 (1)

where dx is the lattice length, e; is the velocity of fluid
particles. Solid particles are moved under the combined
action of fluid convection and Brownian diffusion, and
Ax is then explicitly calculated.

Xp+e3At Xp+exAt
PN Axp
A N
<
Xp )4 Xp+elAt
1Y

Fig. 1 Rules for particle motion in CA model

S8

And then, the LB-CA model is used to simulate the
filtration process of elliptical fibers in three different
capture mechanisms: diffusion, interception and inertial
impaction. Fig.2 presents the particle trajectories in the
diffusional mechanism.

Fig. 2 Particle trajectories in diffusional mechanism(e=4,0=60°)

It is worth noting that, different fiber shapes will
result in differences for filtration processes. Compared
with the cylinder fiber, there are some factors(such as
aspect ratio &, place angle 6, particle diameter) which
may affect the capture efficiency of elliptical fibers.
Through comparing with the capture efficiency of
cylinder fibers with the same volume, a series of
correction  coefficients are obtained by using
Levenberg-Marquardt algorithm. Taking the diffusional
mechanism as the example, the expression of the capture
efficiency correction coefficient is:

Cep =0.06592¢+0.952 43 2

Tab. 1 presents the results obtained from LB-CA
model and Eq.(2), it can be found that the correction
coefficient is reasonable.

Tab.1 Diffusional capture efficiency of elliptical fiber (7ep/70,0)

P, & LB-CA Eq(2) Error/%
235 1.6 1.071 1.058 -1.26
235 4.0 1.221 1.216 —-0.44
235 6.0 1.336 1.348 0.92
700 1.6 1.054 1.058 0.42
700 4.0 1.237 1.216 —-1.66
700 6.0 1.344 1.348 0.32




