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ABSTRACT: Gas-to-particle synthesis under high temperature is one of the most important methods for producing multi-
component nanoparticles. The volume enlargement of particles due to aggregation accompanies the component mixing within
particles in a nonreactive system. To tailor nanocomposites, it is essential to gain an insight into the dynamic evolution of
compositional distributions. In this paper, the differentially weighted Monte Carlo (DWMC) method for population balance
modeling is used to simulate the process of aggregative mixing. On themethodological end, a new shift action is proposed to regulate
a limited number of simulation particles to be distributed as homogeneously as possible over high-dimensional and inhomogeneous
joint space of multiple components, where some simulation particles in less-populated regions are split into more simulation
particles in order to increase sample space for stochastic statistics and then fatigue against statistical noise, at the same time a certain
number of simulation particles in densely populated regions are randomly removed from the simulation to reduce computational
demands. The DWMC with the new shift action is used to simulate the aggregative mixing process of bicomponent nanoparticles
with compositional-independent or -dependent Brownian coagulation kernel in the free-molecular regime. It is found that the
compositional distributions satisfy self-preserving formulation as the particle size distribution in monocomponent systems; and the
extent of the time evolution of the degree of mixing (the mass-normalized power density of excess component A) corresponds with
that of self-preserving distributions. The compositional distributions and the degree of mixing predicted by the DWMC agree well
with theoretical models, while the constant-numbermethod (using equally weighted simulation particles) fails in themore advanced
stages of aggregative mixing.

1. INTRODUCTION

The behavior of multicomponent particles is of interest in
a variety of processes involving dispersed systems, such as
atmospheric aerosols, synthesis of nanocomposites, poly-
merization, granulation, combustion, crystallization, preci-
pitation, catalytic chemical processes, food processes, etc. In
these processes, the binary collision of particles forming
larger particle units often represents the main mechanism,
whereas nucleation, breakage, condensation, surface growth,
and sedimentation can also contribute to the dynamic
evolution of the particle population. These binary collisions
can be denoted as coagulation, agglomeration, aggregation,
or coalescence, with different definitions being used in
different fields of science. In this paper, we apply the term
“aggregation”, as the actual form of the particle is not
considered. In a nonreactive system, the volume enlargement
of particles due to aggregation accompanies the compo-
nent mixing within particles. The process is referred to as
“aggregative mixing” by some authors.1,2

One of the most interesting issues, in addition to the dynamic
evolution of particle size distribution (PSD), is the distribution of
the individual components over the aggregates. The governing
equation for aggregative mixing is given by extending Smolu-
chowski’s equation for single-component aggregation to a multi-
variate population balance equation (PBE). A simpler bivariate
PBE for bicomponent aggregativemixing in spatially homogeneous

systems is given by
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The underlying nature of eq 1 is that a two-component aggrega-
tion event between a particle of state (mA,mB) and a particle of
state (mA

0
,mB

0
) results in a new particle of state (mA+mA

0
,mB+mB

0
)

and the death of the two parent particles. A bicomponent particle
is characterized by the massesmA andmB of the two components
within the particle. In eq 1, n(mA,mB,t) is the number density
function at time t such that n(mA,mB,t) dmAdmB represents the
number concentration of particles in the mass range of one
component, mA to mA+ dmA, and the mass range of another
component, mB to mB + dmB; β(mA,mB;mA

0
,mB

0
) is the aggrega-

tion rate coefficient between a particle of state (mA,mB) and
another particle of state (mA

0
,mB

0
).
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There is a limited number of studies dealing with a theoretical
analysis of the general dynamic behavior of bicomponent mixing.
Lushnikov has investigated aggregative mixing of two compo-
nents with composition-independent kernels analytically.3 Gel-
bard and Seinfeld have extended the analysis of multicomponent
aggregation to continuous systems with an arbitrary number of
components.4 Krapivsky and Ben-Naim have developed a two-
parameter scaling law for analytical solution of bicomponent
aggregation with a constant aggregation kernel, which is char-
acterized by Gaussian statistics.5 Vigil and Ziff further extended
the scaling theory of bicomponent aggregation to nonconstant
kernels that may be composition-dependent or -independent,
and showed that the compositional distribution within each size
class is a Gaussian function, irrespective of the kernel and the
initial condition.6 More recently, Matsoukas and his colleagues
have formulated the PBE for bicomponent aggregation with
composition-independent or -dependent kernels and derived
equations for the evolution of the bivariate distribution (in size
and composition), the size distribution, the compositional dis-
tribution, and the degree of mixing.1,2,7 Worth noting is that they
found from themean-field PBEs that the mass-normalized power
density of excess solute, which is utilized to quantify the degree of
mixing in the population, always reaches steady-state value in all
cases, while aggregation proceeds and large size particles are
formed. Note that in this terminology the two-component
system is composed of a solute A and a solvent B, but the term
solute can also be used to denote the minor component.
Although these above-mentioned theoretical models can give
analytical solutions for special cases with considerable simplifica-
tions of specific kernels (e.g., constant,3,4,8 sum,8,9 product,8 and
composition-independent1,2 kernels) or specific initial bivariate
distributions (e.g., monodisperse,3,4,8,9 bidisperse,3,4,8,9 and
exponential3,6 distributions) or even both, our aim is to find a
method which enables precise numerical solutions of the bivari-
ate population balance without simplifications.

The numerical solution of the bivariate PBE eq 1 is challenging
due to the double integral and the nonlinear behavior of
aggregative mixing. Basically, it is possible to distinguish between
deterministic methods based on differential equations and sto-
chastic methods. The deterministic methods directly calculate
the double integral either through an appropriate discretization
scheme such as in sectional methods or by quadrature which is
applied in the method of moments. Among the sectional
methods for aggregative mixing the following methods have
been applied: the fixed pivot technique,10�12 the cell average
technique,13 the finite volume method,14 the finite element
method,15 and the high-resolution method.16 The moment-
based methods include the quadrature method of moments17

and the direct quadrature method of moments.18 These deter-
ministic methods are computationally less demanding and can be
combined with computational fluid dynamics (CFD) to simulate
spatially dependent aggregative mixing. However, if more than
two internal particle properties have to be included in population
balance equations in the simulation, these deterministic methods
lead to too complicated mathematical equations. As an example
we cite here multicomponent nanoparticle synthesis in the gas
phase at high temperature where in addition to chemical
composition and size also the surface area of the aggregates has
to be described during process simulation. On the contrary, the
stochastic methods, or the population balance-Monte Carlo (PB-
MC) methods, which directly simulate the dynamic evolution of
a finite sample of particles having specific sizes and compositions

using aMonte Carlo (MC) technique, are capable of dealing with
high-dimensionality problems (so-called multivariate population
balances) in a simple and straightforward manner. The stochastic
methods can also be divided into two classes: the “particle-based
algorithm” and the “species-based algorithm” (in the nomencla-
ture of Laurenzi et al, they are “particle accounting algorithm”
and “species accounting algorithm”;8 while Kraft et al. used
“mass flow algorithm” and “direct simulation algorithm” to
distinguish them19). With regards to the particle-based algo-
rithm, the particle population is represented by a finite number of
simulation particles, each of which is identified by several internal
variables such as size and composition. By simulating the
dynamic evolution of these simulation particles the statistical
behavior of the population is determined. The constant-volume
method,20�22 stepwise constant-volume method,23�25 time-
driven direct simulation Monte Carlo method,26,27 constant-
number (CN) method,1,2,7,28�30 differentially weighted (DW)
method,31�35 and majorant-kernel method36 belong to the
particle-based algorithm. These MC methods differ in the
treatment of time-step (time-driven or event-driven), the re-
storation of the number of simulation particles (constant number
or stepwise restoration), particle weighting scheme (equally
weighted or differentially weighted), and the stochastic model
(normal Markov model or jump Markov model). Because the
history of each simulation particle can be retained, the extension
of these MC methods from monovariate systems to multivariate
systems is in principle only by assigning multiple internal
variables (in this paper, additional to particle volume the mass
of chemical components) to individual simulation particles.
Obviously, the direct extension does not increase the complexity
of the MC code, while the numerical operation increases linearly
as the increment of internal variables.8 In species-based algo-
rithm, the particles with size in a specified interval are viewed as
pseudochemical species, and the stochastic simulation algorithm
for chemical kinetics is adopted to define the state of an
aggregating system in terms of “aggregate species”.22 The
species-based algorithm also has a variety of different implemen-
tations by different researchers such as Laurenzi et al,8

Irizarry,37,38 Kraft et al,39,40 and Debry et al.41 Although these
stochastic methods exhibit an excellent improvement in effi-
ciency and memory demand compared to a traditional particle-
based algorithm (direct simulation Monte Carlo), they are
usually at the cost of complicated algorithms and are less sensitive
to the innate fluctuations for aggregation processes which are also
stochastic in nature.

Owing to the dramatic increase in computational power over
the past decade, the particle-based algorithm is increasingly used
in fields where the population is characterized by several internal
variables, for example volume and composition. Because the
numerical accuracy of the stochastic algorithm increases with the
number of simulation particles but its computational efficiency
decreases with increasing particle number, the sample size has to
be controlled within appropriate bounds to attain an optimal
combination of high accuracy and high efficiency. For this
requirement, a constant number of simulation particles through-
out the simulation is highly recommended. In this respect, the
constant-number method by Matsoukas et al28�30 and the
differentially weighted method by the authors31�34,42,43 are
two appropriate candidates. On the other hand, it must be noted
that theMCmethod still leads to a great deal of statistical noise in
the distribution functions if there is an insufficient number of
simulation particles in a specific region of the internal variables.
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This becomes especially clear for bicomponent aggregation
because even when millions of simulation particles are used,
there may still be only few or even no simulation particles at the
edges of the compositional distributions. This makes it impos-
sible to determine the compositional distributions in this region
using aMCmethod. To determine accurately the distributions of
internal variables over their full spectrum, not only the total
number of simulation particles but also the number of simulation
particles of all specified sections of the internal variables should
be controlled within appropriate bounds. In other words, it is
necessary to specify a finite number of simulation particles to be
distributed homogeneously over the multidimensional joint
space of internal variables, rather than to let them evolve freely.
In the constant-number method, the number of simulation
particles at the edges of the size distribution is very limited
(see Figure 9 in ref 34). The constant-number method does not
allow the restriction of the number of simulation particles in each
section of distributions of internal variables within prescribed
bounds due to its inherent equally weighting scheme. On the
contrary, in the differentially weighted method,34,35 we proposed
a special action to limit the number of simulation particles in
densely populated regions and to increase their number in less-
populated regions by splitting some simulation particles in less-
populated regions into more simulation particles and randomly
removing some simulation particles in densely populated regions
from the simulation. This “shift” action can only be used by a
differentially weighted method as the action necessitates con-
sideration and recalculation of individual weights. However, the
original shift action described in refs 34 and 35 may slightly
disturb dispersed systems, especially particle mass concentration,
because of the random removal of a certain number of simulation
particles. Furthermore, although the simulation particle number
in the differentially weighted method is constant between two
shift actions, the shift action changes the number of simulation
particles (in most of cases, an increase) because the number of
added simulation particles may be unequal to that of removed
simulation particles. One of aims of this paper is to improve the
shift action, shown for a multivariate population balance.

Another aim of this paper is to simulate realistic cases of
aggregative mixing leading to nanocomposite particles. Nano-
composite particles having special properties such as super-
conductivity, superparamagnetism, or increased catalytic activity,
can be produced from a mixture of precursors.44 In that case,
Brownian aggregation in the free molecular regime is one of
the most important formation mechanisms, and the composi-
tional distribution over the aggregates largely determines the
functionality of the composite nanoparticles. Thus, insight into
the evolution of compositional distribution is important for
optimizing the synthesis process and for tailoring functional
particles. To the best of our knowledge, there exists no study for
aggregative mixing of nanocomposite particles with Brownian
coagulation kernel in the free-molecular regime. The Brownian
aggregation kernel in the free-molecular regime is either compo-
sition-independent or compositional-dependent kernel, depend-
ing on whether the material density of the components is equal
or not, respectively. We will utilize two different MC methods,
the constant-number method30 and the differentially weighted
method,35 to simulate a typical case of aggregative mixing of
nanoparticles. These simulation results will be compared with
available theoretical predictions. On the one hand, the perfor-
mance of two MC methods can be evaluated; on the other hand,
the usability of available theoretical models is assessed.

This paper is organized as follows: in section 2.1, the differ-
entially weighted method for multivariate population balance is
briefly introduced, including its theoretical model and numerical
realization. Section 2.2 describes an improved shift action which
limits the number of simulated particles below a specified value and
leads to less stochastic fluctuations. Section 3.1 shows some defini-
tions relative to two-component aggregation; section 3.2 shows the
results for composition-independent aggregative mixing of nanopar-
ticles using the two MC methods, and composition-dependent
aggregative mixing of nanoparticles is discussed in section 3.3.

2. THEORY AND METHODS

2.1. The Theoretical Model and Numerical Realization.We
have already proposed a differentially weighted MC (DWMC)
method for particle coagulation in monovariate systems.32,34 The
DWMC method can be directly extended to two-component
coagulation processes as follows:35

(1) At the start of the simulation, simulation particles are
differentially weighted on the basis of the initial compo-
sitional distributions. First, two individual compositional
spectra are respectively divided into intervals by laws
which can be freely adapted to the problems to be solved,
resulting in a sectionalized two-dimensional space of
compositional distribution. The section (p,q) repre-
sents particles having component masses centered at
(mA,p,mB,q), to be more precise: particles having A-com-
ponent masses betweenmA,p

� andmA,p
+ and B-component

masses between mB,p
� and mB,p

+ , and the number concen-
tration of particles in this section is n(mA,p,mB,q,0)�
(mA,p

+ � mA,p
� )(mB,p

+ � mB,p
� ). The real particles from this

section are represented by a certain number of weighted
simulation particles. The mean weight of simulation
particles for the section (p,q) is thus calculated as

w̅pqðmA, p,mB, qÞ ¼ nðmA, p,mB, q, 0Þðmþ
A, p �m�

A, pÞ
�ðmþ

B, q �m�
B, qÞV=NsðmA, p,mB, qÞ ð2Þ

whereNs(mA,p,mB,q) is the number of simulation particles
located at the section (p,q); V is the volume of the
simulated system. In the DWMC method, Ns is pre-
scribed to be more than a fixed minimum number Ns,min

but less than a maximum number Ns,max. Sections where
the number density of real particles is high are thus
designated to have simulation particles with larger weight
values than sections where number density is low.

(2) The time step is determined from local mean-field
coagulation rate:

Δt ¼ pNst= ∑
Nst

i¼ 1
ðVC0

iÞ ð3Þ

where the parameter p is recommended to have values
among 2/Nst and 0.05; Nst is the total number of
simulation particles in the system; Ci

0
(with dimension

of m�3
3 s
�1) is the total aggregation rate of simulation

particle i. Ci
0
is calculated from the probabilistic aggrega-

tion rule for an aggregation event between two differen-
tially weighted simulation particles.32,34 In this rule, for a
aggregation event between simulation particle i and j, it is
imagined that each real particle from i undergoes a real
coagulation event with a probability of min(wi,wj)/wi, and



10655 dx.doi.org/10.1021/ie200780q |Ind. Eng. Chem. Res. 2011, 50, 10652–10664

Industrial & Engineering Chemistry Research ARTICLE

each real particle from j does so with a probability of
min(wi,wj)/wj, where wi and wj are the private weights of i
and j, respectively. Ci

0
is thus calculated as32,34

C
0
i ¼

1
V 2 ∑

Nst

j¼ 1, i 6¼j

2βijwj maxðwi,wjÞ
wi þ wj

" #
¼ 1

V 2 ∑
Nst

j¼ 1, j 6¼i

β
0
i

ð4Þ
where βij is the aggregation kernel between particle i and
particle j, m3

3 s
�1; βij

0
is a normalized kernel that relates

not only to the states (e.g., masses) but also to the weights
of the two simulation particles.

It has to be noted that the DWMCmethod can evolve
either in event-driven mode or in time-driven mode ac-
cording to the value of parameter p. If p = 2/Nst, the
resultant time-step, 2/(VΣCi

0
), is just the waiting time

between two successive aggregation events, and theDWMC
method evolves in the event-driven mode, where only

one aggregation event occurs within this time-step. If
p > 2/Nst, there are pNst/2 coagulation events in average
within the time-step and the DWMC method evolves in
the time-driven mode. The event-driven mode is more
accurate because aggregation events are fully uncoupled,
while the time-driven mode is faster because more events
are simulated within one time step. In the following
simulation, time-driven mode is used, and p = 0.01.

(3) Within the time step Δt the interacting particle pair(s) is
(are) selected with probability βij

0
/ΣiΣj,j6¼iβij

0
. Either the

cumulative probabilities method or the acceptance-rejec-
tion method can be adopted to determine the coagulated
pair(s) in either event-driven mode or time-driven mode,
as described in ref 35.

(4) An aggregation event results in simulation particles with
new states and weights according to the probabilistic
aggregation rule. As for the i�j aggregation event, two
new simulation particles replace the “old” particles i and j,
as formulated by

if wi 6¼ wj,

w�
i ¼ maxðwi,wjÞ �minðwi,wjÞ;m�

i ¼ mkjwk ¼maxðwi ,wjÞ; v
�
i ¼ vkjwk ¼maxðwi ,wjÞ;m

�
A, i ¼ mA, kjwk ¼maxðwi ,wjÞ;

m�
B, i ¼ mB, kjwk ¼maxðwi ,wjÞ;

w�
j ¼ minðwi,wjÞ;m�

j ¼ mi þ mj; v�j ¼ vi þ vj;m�
A, i ¼ mA, i þ mA, j;m�

B, i ¼ mB, i þ mB, j

8>>><
>>>:

if wi ¼ wj,
w�
i ¼ wi=2;m�

i ¼ mi þ mj; v�j ¼ vi þ vj;m�
A, i ¼ mA, i þ mA, j;m�

B, i ¼ mB, i þ mB, j;

w�
j ¼ wj=2;m�

j ¼ mi þ mj; ; v�j ¼ vi þ vj;m�
A, i ¼ mA, i þ mA, j;m�

B, i ¼ mB, i þ mB, j

8<
: ð5Þ

where the asterisk indicates a new value of weight or state after
the aggregation event;mi and vi are the total mass and volume of
simulation particle i; mA,i and mB,i are the mass of component A
and component B in simulation particle i. It is obvious eq 5
satisfies the laws of conservation of mass, and also keeps the
number of simulation particles constant. The particle diameter
(d) which is necessary for calculating the aggregation kernel is
obtained from particle volume, assuming the aggregates rapidly
attain a spherical shape due to fast coalescence or sintering.
(5) The total aggregation rate of each particle is updated after

Δt using the smart-bookkeeping technique.34

(6) When certain conditions are reached, for example, when
the number concentration of real particles is halved, a shift
action is performed which restricts the number of simula-
tion particles in predefined size intervals of each com-
ponent space within prescribed bounds. Section 2.2 de-
scribes this shift action in detail.

(7) Step 2�6 are repeated until the desired end time.
2.2. Improving the Shift Action. 2.2.1. The Original Shift

Action. First the original shift action for two-component aggrega-
tion is briefly introduced.35 It is numerically realized as following:
First, the distribution of each component is sectionalized by
some prescribed laws (e.g., logarithmical spaced sections for an
initially continuous distribution) and the number of simulation
particles in the chosen intervals of each component space is
counted. Then, for each interval of component-A space or
component-B space, it is checked whether the simulation
particle number in the interval is within prescribed bounds, i.e.,
between the prescribed minimum Ns,min and maximum Ns,max.
If yes, no action is implemented; otherwise, either an adding
action or a removing action is utilized. The section (p,q) of the

two-component space is taken as an example to illuminate its
numerical realization. The numbers of simulation particles in the
interval p of component-A space and the interval q of compo-
nent-B space areNsA,p andNsB,q, respectively. If min(NsA,p,NsB,q)
<Ns,min, the adding action is performed. A simulation particle i in
the section (p,q) is equally split into new simulations particles
with an integer number [Ns,min/min(NsA,p,NsB,q)]. These new
particles have the same internal variables as their parent particle i
and have a weight ofwi/[Ns,min/min(NsA,p,NsB,q)]. One daughter
particle replaces the position of its parent particle i, and other
daughter particles are added to the array of simulation particles.
Further, when no simulation particles are present in an interval,
for example, in the early stage of aggregation of initially mono-
disperse particles, no addition action is performed in this section.
It is worth emphasizing that the adding action does not change
the compositional distributions, and it also conserves the history
of the particles but at the cost of more simulation particles; on the
other hand, if max(NsA,p,NsB,q) > Ns,max, the removing action is
initiated. A simulation particle j in the section (p,q) can be
randomly removed with a probability of Prem, Prem = [max(NsA,p,
NsB,q) � Ns,max]/max(NsA,p,NsB,q) = 1 � Ns,max/max(NsA,p,
NsB,q). A random process is used to decide whether simulation
particle j is removed or not. If a random number r from a uniform
distribution in the interval [0,1] is less than Prem, j is removed and
its open position is taken by the last particle in the simulation
particle array. If not, the number weight of j is corrected by a
multiple factor 1/(1 � Prem), that is, max(NsA,p,NsB,q)/Ns,max.
That is, (wj)new = (wj)old/(1 � Prem).
The original shift action effectively leads to shifting simulation

particles from densely populated regions where already enough
simulation particles are present to less-populated regions.
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The shift action is capable of regulating the population of
simulation particles so that it is distributed homogeneously over
composition space. The numerical results shown in ref 35
(Section 3.2) has proven the shift action is very useful for
obtaining more accurate results in the less-populated regions of
compositional distributions. However, it also showed that the
shift action leads to errors in the global moments of the
distributions because removing simulation particles by a stochas-
tic game adds random noise to the real particle population. In the
removing action, every simulation particles in a densely popu-
lated section has the same removal probability Prem, but their
weights may be very different. For a simulation particle with large
weight, either being removed or being changed in weight can
introduce a remarkable disturbance to the real particle popula-
tion. Only when simulation particles in a densely populated
section have the same weight the removing action using the
uniform removal probability is capable of conserving the real
particle population exactly. For more general cases, the removing
action leads to errors in the global moments and the composi-
tional distributions. Figure 1 shows themass concentration in the
case of two-component aggregation as described in Section 3.2.
The original shift action is unable to conserve the mass
concentration.
Furthermore, although the number of simulation particles in

the differentially weighted method is constant between two shift
actions, the original shift action makes the simulation particle
number change (in most of cases, an increase) because the
number of added simulation particles may be unequal to that of
removed simulation particles. In view of the computational cost,
the total number of simulation particles should be controlled to
be less than a prescribed constant value.
2.2.2. The Improved Shift Action. The shift action can be

improved in two aspects: (1) The removal probability of a
simulation particle in a densely populated section depends on
its private weight and the number of simulation particles in the
section. The more simulation particles there are in the section,
the larger the removal probability these simulation particles have;
the smaller the weight of the simulation particle is, the larger the
removal probability it has. (2) A better control over the total
number of simulation particles, so that a given maximum number
of simulation particles is not surpassed. Both considerations are

included into the improvement of the shift action, described
hereafter.
In the improved shift action, the sectionalization in composi-

tion and the adding action are same as in the original shift action.
After this, the number of added simulation particles, Nst,add, and
the number of simulation particles in a section (p,q),Ns,pq, are all
known. A two-step removing action sequentially removes simu-
lation particles from densely populated regions. The first step is
to choose a section in the densely populated regions fromwhich a
simulation particle has to be removed. These sections are the
ones where Ns,pq > Ns,max. A section (p,q) is chosen with the
following probability

Gpq ¼ Ns, pqδðmaxðNsA, p,NsB, qÞ > Ns, maxÞ
∑
p
∑
q
½Ns, pqδðmaxðNsA, p,NsB, qÞ > Ns, maxÞ� ð6Þ

where δ is Dirac delta function. Thus, if the following condition is
met, one simulation particle will be removed from the section
(p,q):

∑
p

ϕ¼ 1
∑
q � 1

j¼ 1
Gϕj e r e ∑

p

ϕ¼ 1
∑
q

j¼ 1
Gϕj ð7Þ

In fact, selecting a section with probability Gpq is a standard
process of the cumulative probabilities method, and the
probability Gpq satisfies nearly an exponential distribution.
Similar scheme is used to select a simulation particle from
the section (p,q) for removal in the second step. For a simu-
lation particle i in section (p,q), the removal probability
Prem,i,pq is designed as

Prem, i, pq ¼ 1=wi

∑
Ns, pq

j¼ 1
ð1=wjÞ

ð8Þ

The simulation particle i is removed if

∑
i � 1

j¼ 1
Prem, j, pq e r e ∑

i

j¼ 1
Prem, j, pq ð9Þ

Another simulation particle j in the section (p,q) is selected at
random to merge with the simulation particle i. That is, the
weight of j is replaced by the sum of its old weight and the weight
of i, (wj)new = (wj)old + (wj)old. The open position of i can now be
occupied by one of the simulation particles produced by the
adding action. Because i and j fall into the same section and have
similar internal variables, the removal of i and then the merge of i
and j only have very little influence on the real particle popula-
tion. It is shown in Figure1 that the new shift action is now able to
simulate the mass concentration with high accuracy.
The two-step removing action is repeated Nst,add times to

remove Nst,add simulation particles from densely populated
regions. It is important, however, that the selection probability
of section (p,q), Gpq, and the removal probability of a simulation
particle i in the section (p,q), Prem,i,pq, are updated before the next
removing action.
There are six remarks on the new shift action.
(1) At the initial stage of MC simulation compositional

distributions are usually very narrow. It is not necessary
to use too many simulation particles to represent the
narrow distributions from the viewpoint of saving CPU
time. So, the MC simulation can be started with an

Figure 1. The mass concentration as a result of the original and the
improved shift action in the case of bicomponent aggregation.
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appropriate number of particles (for example, 10000
simulation particles in this paper where an initial bidis-
persed distribution is used). Although in individual sec-
tions the prescribed values of Ns,max can be initially
exceeded, the removing action is enabled only when the
total number of simulation particles exceeds the pre-
scribed value Nst,max (for example, 30000 in this paper).
In such a way, the number of simulation particles adapts
to the compositional distributions automatically, step by
step, and on the other hand it is limited although the
compositional distributions may continuously expand
along with the MC simulation.

(2) In the original shift action, the maximum number of
simulation particles in a discrete interval,Ns,max, is usually
prescribed to be larger than Ns,min (for example, Ns,min is
usually 100, and Ns,max is 600 in the monovariate popula-
tion balance34 or 1000 in the bivariate population
balance35) in order to avoid too many simulation particles
being removed from the simulation which adds random
noise to the particle population. On the contrary, it is
suggested that Ns,max = 2Ns,min in the improved shift
action. The reason is that the more candidates there are
for the stochastic removing action, the less stochastic
noise there is to the real particle population. In the
following simulation, Ns,max = 2Ns,min = 200.

(3) Depending on the particular problem, a different number
of internal variables is required. The improved shift action
described above, which distributes the simulation parti-
cles over the 2-dimensional component space, is devel-
oped for the bivariate population balance. The shift action
for a monovariate or multivariate population balance is in
principle straightforward. However, the shift action for
multivariate population balances with more than two
variables may meet difficulties such as insufficient com-
puter memory or CPU speed. A four-component system,
for example, needs at least four internal variables to
determine its state, The simulation particle number is
withinNs,min�Ndi,A�Ndi,B�Ndi,C�Ndi,D andNs,max�
Ndi,A�Ndi,B�Ndi,C�Ndi,D, whereNdi,k (k = A, B, C, D)
is the number of sections of the k-component space. If
Ns,min = 100, Ns,max = 200, and Ndi,k = 100, the total
number of simulation particles is required to be 1010 at
minimum and 2 � 1010 at maximum. This clearly
surpasses the current computing power. To overcome
the difficulty, we suggest the following solution: first, one
or two of the most important internal variables is selected;
then the simulation particles are distributed only over the
1-dimensional or 2-dimensional space of the interesting
internal variable(s) using the new shift action. With
regards to aggregative mixing of a two-component
system, it is found in the following simulation that
distributing simulation particles over one compositional
distribution by the new shift action is able to satisfy
general requirements in engineering. In the following
simulation, it is considered the mass of component A is
the most interesting internal variable. Our results show
that the compromise between more simulation particles
for problems with more than two internal variables and
higher accuracy for compositional distributions is very
effective. Furthermore, it is worth emphasizing that,
although a compromise is used to overcome the difficulty
of the shift action for problems with more than two

internal variables, the DWMC method still has the
advantage of dealing with high-dimensionality problems
in a simple and straightforward manner.

(4) Apart from the fact that the new shift action exhibits
better mass conservation, the new shift action shows
similar performance as the old shift action in terms of
number concentration, the moments of the bivariate
compositional distributions (Mij), and compositional
distributions within selected size intervals and at specified
time-points. These results are not shown here because of
space limitations. Furthermore, the computational effi-
ciency is also nearly same (in a general desktop PC
quipped with CPU of Inter(R) Core(TM)2 Quad
Q9300 @2.5 GHz and memory of 4GB, about 7131 s
with the new shift action, while 7956 s with the old shift
action).

(5) The shift action is a numerical tool, which adheres to the
DWMCmethod. The shift action will cost about 10 s each
time for the case described later. There, the shift action
runs only 18 times because it is performed only when the
number concentration is halved. The CPU time con-
sumed in the shift action is about 2.5% of the total CPU
time of the MC simulation. Considering that the shift
action improves greatly the accuracy of compositional
distributions, it is a good compromise between computa-
tional efficiency and precision.

(6) In the improved shift action, it is possible to select a
simulation particle for removal with other probabilities
such aswi/Σj = 1

Ns ,pq wj or (1/wi
2)/Σj = 1

Ns ,pq (1/wj
2). Applying

such different removal probabilities has practically no
influence on computational accuracy and efficiency.
This is also found when the particle which merges with
the removed particle is selected with uniform prob-
ability, or with probability (1/wi)/Σj = 1

Ns ,pq (1/wj). We do
not show these results here because of space limita-
tions. Considering that the new shift action presented
above is capable of conserving mass and is simple in
theory and in programming, it is suggested for applica-
tion in aggregative mixing of particles in multicompo-
nent systems.

3. RESULTS AND DISCUSSION

Nanoparticle synthesis from the gas phase has attracted
growing interest because it can produce high-purity nanoparti-
cles with specifically tailored chemical and physical properties.
Typically in the processes, highly concentrated nanosized
nuclei grown by nucleation undergo rapid Brownian aggrega-
tion. This occurs usually in the free-molecular regime, where
particle diameter (dp) is far less than the mean free path of gas
molecular (λ), or conveniently described as the region where
the Knudsen number (Kn = 2λ/dp) > 10. The Brownian
aggregation kernel can in that case be obtained from kinetic
gas theory:

βij ¼
πkBT
2

� �1=2 1
mi

þ 1
mj

 !1=2
ðdi þ djÞ2 ð10Þ

where kB is the Boltzmann constant and T is the absolute
temperature of system. If the material density of component A
(FA) is different from that of component B (FB), the kernel is



10658 dx.doi.org/10.1021/ie200780q |Ind. Eng. Chem. Res. 2011, 50, 10652–10664

Industrial & Engineering Chemistry Research ARTICLE

naturally composition-dependent. If FA = FB = F, the kernel is
composition-independent, and eq 10 can be rewritten to the
following general formula:45

βij ¼
3
4π

� �1=6 6kBT
F

� �1=2
ðv1=3i þ v1=3j Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
vi

þ 1
vj

s
ð11Þ

The characteristic aggregation time scale, τ, is defined as
1/(β̅0N0) for an initially bidisperse distribution, where N0 is
the initial number concentration of particles; β̅0 is the mean
kernel over all possible particle pairs at time t = 0.

At high temperature, the resultant nanoparticles may fully
coalesce into dense spheres almost instantaneously. With
regards to two-component nanoparticle synthesis, primary
particles containing only component A and primary particles
from component B are first generated, then aggregate to form
larger particles which do not react chemically. This leads to
aggregative mixing. One is usually interested in compositional
distributions as a function of time or particle size, and the
degree of mixing along with time or particle size, and, further-
more, how to reach a certain level of mixing by control of initial
feeding conditions such as the concentration and species of gas
precursors. As an example, in the synthesis of FePt nanoparti-
cles to be used in thin films for magnetic recording it is
important that the L10 phase which has the desired magnetic
properties is formed. However, this phase can only be formed
when between 40 and 60 mol % Pt is present in the particle.46 It
is therefore important to be able to calculate the compositional
distribution in the particles.

The objectives of the following section are (1) to compare the
performance of two PB-MCmethods, the differentially weighted
MC and the constant-number method, in describing two-com-
ponent Brownian aggregation with a composition-independent
kernel, (2) to validate the numerical results by comparing with
available theoretical predictions of the degree of mixing and the
compositional distribution, and (3) to demonstrate the practical
applicability of the numerical method to describe aggregative
mixing with a composition-dependent Brownian aggregation
kernel.
3.1. Definitions. Compositional Distribution. We consider a

population of particles made out of two components A and B,
with ϕ as the overall mass fraction of component A. In an initially
bidisperse and bicomponent population expressed in terms of
mass concentration MA, initial number concentration NA0, and
initial particle mass mA0 for component A and related ones for
component B, we can write:

ϕ ¼ MA=ðMA þ MBÞ ¼ MA=M
¼ NA0mA0=ðNA0mA0 þ NB0mB0Þ ð12Þ

The state of an individual particle is given by the mass of the
components A and B within the particle,mA andmB, respectively.
It can also be expressed in terms of the composition or mass
fraction c of component A, which is defined as c = mA/m. The
compositional distribution of component A is denoted by the
probability density function g(mA|m) dmAwhich is the fraction of
particles of mass m that contains component A in the mass
amount (mA,mA + dmA). The distribution g(mA|m) of compo-
nent A of mass mA within a large aggregate of mass m is found to
be a Gaussian function from the random-mixing theory and

central-limit theorem:1,2,7

gðmAjm, tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2πmχ

p exp �ðmA � ϕmÞ2
2mχ

" #
; or

Gðcjm, tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πχ=m

p exp �ðc� ϕÞ2
2χ=m

" #
ð13Þ

In this equation, g(mA|m) dmA = G(c|m) dc.
Degree of Mixing. The compositional distributions are asso-

ciated to the overall degree of mixing, which can be conveniently
expressed by the mass-normalized power density of excess
component A, defined as1

χ ¼ X2

M

¼

Z ∞

0
dmA

Z ∞

0
dmBx

2nðmA,mB, tÞZ ∞

0
dmA

Z ∞

0
dmBðmA þ mBÞnðmA,mB, tÞ

¼

Z ∞

0
dm
Z m

0
dmAx

2f ðm, tÞgðmAjm, tÞZ ∞

0
dm
Z m

0
dmAmf ðm, tÞgðmA jm, tÞ

ð14Þ

where f(m,t) is the component-independent particle size dis-
tribution function such that f(m,t) dm represents the number
concentration of particles in the mass range of m to m + dm; x is
the amount of component A in excess of the amount ϕm:

x ¼ mA � ϕm ¼ mA � ϕðmA þ mBÞ ð15Þ
The smaller χ is, the better the mixing of the two components.
Since χ almost does not vary during the aggregation, a more
practical parameter measuring the degree of mixing is the
segregation index (S.I.), defined as7

S:I: ¼ χ=m̅ ð16Þ
where m is the mean mass of aggregates. Theory predicts the S.I.
scales as 1/m.2

Moments. The moments of the monovariate distribution
f(m,t), Mi(t), and the moments of the bivariate distribution
n(mA,mB,t), Mij(t), are respectively defined as

MiðtÞ ¼
Z ∞

0
mif ðm, tÞ dm;

Mi, jðtÞ ¼
Z ∞

0

Z ∞

0
mi
Am

j
BnðmA,mB, tÞdmAdmB ð17Þ

Some statistical parameters over all particles (for example,
relative number concentration N(t)/N0, mean mass m(t)/
m(0), and geometric standard deviation σg based on particle
volume) can be derived from themonovariate moments. And the
mass-normalized power density of excess component A is also a
function of several bivariate moments,18

χ ¼ ð1� ϕÞ2M20

M
� 2ð1� ϕÞϕM11

M
þ ϕ2

M02

M
ð18Þ

Dimensionless Distributions. In the self-preserving formulation,
the dimensionless particle mass is defined as η = Nm/M = m/m,
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and the dimensionless number distribution function as Ψ =
Mf(m,t)/N2,47 where m is the average mass, M is the total mass
concentration and N is the total number concentration. Similarly,
the dimensionless mass of component A is ηA = NAmA/MA, the
dimensionless component-A distribution is ΨA = MAfA(mA,t)/
NA

2, whereMA is the total mass concentration of component A in
particles, NA is the total number concentration of particles
containing component A, fA(mA,t) is the number density distribu-
tion of particles containing component A of mass mA, such that
fA(mA,t)dmA is the number concentration of particles containing
component A in the mass range of mA to mA+ dmA.
3.2. Composition-Independent Aggregative Mixing. 3.2.1.

Case Description. A reference case with two initially monodisperse
components having the same density (21.45 � 103 kg m�3) but
different initial diameters and number concentrations are defined.
At t = 0, NA0 = 9NB0, dA0= 0.5dB0 = 1 nm. The resulting mass
fraction of component A is ϕ = 0.5294, and χ0 is calculated with
help of18

χ0 ¼
∑
NA0

i¼ 1
ðmA0 � ϕmA0Þ2 þ ∑

NB0

i¼ 1
ð0� ϕmB0Þ2

MA0 þ MB0

¼ ð1� ϕÞϕðmA0ð1� ϕÞ þ mB0ϕÞ ð19Þ

to be χ0 = 1.3167 � 10�23 so that χ0/mA0 = 1.1724.
The differentially weighted method starts from 10000 simula-

tion particles and limits the simulation particle number to 30000,
while the constant-number method always tracks 30000 simula-
tion particles. The MC simulations are repeated five times using
different seeds for the random number generator.
3.2.2. Self-Preserving Distributions. The self-preserving dis-

tribution for the Brownian coagulation case will be obtained after
a time-lag.48,49 We compare the results at 100000τ with results
from a sectional model,48,49 which were obtained for a single
component. The dimensionless distribution functions as func-
tion of particle mass and of mass of component A are shown in
Figure 2a and 2b, respectively.
As shown in Figure 2, the differentially weighted MC, which is

capable of tracking the distributions over the full range, shows
higher accuracy in the distribution in less-populated regions (e.g.,
η or ηA in the ranges of 0.01 to 0.001 and beyond 10) as
compared to the CNmethod and the sectional method.48,49 This
should be attributed to the fact that the method is capable of
assigning enough simulation particles to each discrete interval
through the improved shift action described in Section 2.2.

Furthermore, it is found that the distribution of component-A
mass can be described with the same self-preserving function as
the total particle mass. This can be understood from the fact that
after many coagulation events, the components are relatively well
distributed over the particles, as will be shown in the following
sections.
3.2.3. Moments of the Distribution. The time evolution of

several monovariate moments or their derivations is shown in
Figure 3: the dimensionless number concentration N(t)/N0, the
dimensionless mean mass m(t)/m(0), and the geometric stan-
dard deviation σg based on particle volume. There is nearly no
difference in the behavior ofMi from the numerical results of the
DWmethod and these of the CNmethod, except that the steady-
state value of σg is 1.46 in the DWmethod rather than 1.45 in the
CN method.
3.2.4. Degree of Mixing. In an earlier report it was found that

the mass-normalized power density of excess component A(χ)
will reach a steady-state value, χsteady-state, with sufficient
processing time for any initial condition (monodisperse, bidis-
perse, or exponential distributions) and any aggregation kernels
(composition-dependent or -independent), and χsteady-state is
approximated to the initial χ, χ0.

7 Indeed, a steady-state value
of χ develops, as shown in Figure 4. It shows the dependency of
the dimensionless mean mass m(t)/m(0). In both MC simula-
tion methods, χ first decreases and then reaches a steady state.
Surprisingly, in the CN method χ starts to increase sharply
at 1000m0 (or from the time moment 100τ), and ends with

Figure 2. Self-preserving number distribution function as function of (a) dimensionless particle mass and (b) dimensionless mass of component A.

Figure 3. Number concentrationN(t)/N0, mean massm(t)/m(0), and
geometric standard deviation σg against time.
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4.37� 10�22 (about 43 times larger than the steady value from the
DW method) at t = 105τ. With more simulation particles (e.g.,
50000) in the CN method, the value of χ is kept constant over a
wider range, and is closer to the excepted constant value at larger
extents of evolution. In fact, χ depends on the two-dimensional

compositional distribution (see eq 14), and it is calculated inMC
by taking into account all simulation particles: χ = Σi=1

Nst [wi�
(mA,i � ϕmi)

2/Σi=1
Nst (wimi). The more simulation particles are

tracked and the more uniformly these simulation particles are
distributed over the two-dimensional joint space of internal

Figure 4. Mass-normalized power density of excess component A (χ) and the segregation index (S.I. = χ/m) against meanmass (a); and against time (b).

Figure 5. Compositional distributions in selected size intervals at t = 1000τ: (a) logarithmic scaling for Y-axis; (b) linear scaling for Y-axis.
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variables, themore accurate the result of χwill be.With respect to
the CN’s inability for steady χ, we argue that the CN method,
which is an equally weighting method in nature, is unable to
capture accurately the aggregative mixing of components within
larger and smaller particles (they are usually with low number
concentrations). More simulation particles are used, more accu-
rate results on composition mixing are obtained in the CN
method. On the contrary, even when a smaller number (10000)
of simulation particles are used in the DW method (where no
shift action is adopted and the DW method tracks 10000
simulation particles throughout the MC simulation), high-pre-
cision results are obtained. This is attributed to different weights,
which effectively increase the number of simulation particles in
the edges of compositional distributions. However in the DW
method with less simulation particles and without the shift
action, χ also diverges from a steady state as time evolves. It is
because simulation particles with limited number are not uniform
over compositional distributions. From this perspective, the shift
action is essential. In Figure 4 another important quantity, the
segregation index (S.I. = χ/m), is shown. The numerical result
from theDWmethod agrees well with the theoretical predication
in which the S.I. scales as 1/m, while the CN method fails at
larger times.
From Figure 4b, it is noted that there are three stages of the

evolution of χ. (1) Stage 1: within 0 and τ χ starts to change
slightly once aggregation occurs. Because within this time
range the aggregation degree is relative smaller, χ is basically
close to its initial value. (2) Stage 2: within τ and 12.7τ (it is the
time-lag reaching to self-preserving state of Brownian coagula-
tion in the free-molecular regime) χ deviates from the initial
value more and more, and approaches to a constant value. In
fact, within the time range larger particles are formed and the
distribution of particle population becomes self-preserving.
(3) Stage 3: when t > 12.7τ χ becomes time invariant and keeps
unchanged. We thus conclude that the time-lag for χ reaching
to a steady state is equal to the time-lag for self-preserving
distribution.
3.2.5. Compositional Distributions. We further examine the

distribution of components. The compositional distributions
with selected size intervals (msp

�∼msp
+ ) from the two MC

methods are compared with theoretical predictions, which are
calculated as follows:

GðcjmÞ ¼ 1
ðmþ

sp �m�
spÞ
Z mþ

sp

m�
sp

exp � c� ϕ
� �2
2χ=m

 !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πχ=m

p dm, where m ∈ ½m�
sp,m

þ
sp�

ð20Þ
Figure 5 shows the compositional distributions in selected size

intervals at t = 1000τ. At this time-moment, the mean mass of
particles is 1600 m0; N(t)/N0 = 6.26 � 10�4; χ reaches to a
steady-state value, 1.0 � 10�23, in the DW method, while in the
CN method χ gradually increase from the steady-state value and
approximates to χ0 until t = 1000τ. The two MC methods
demonstrate similar performance for compositional distributions
with same number of simulation particles. At the peak of
compositional distributions, the CN method is more accurate
since there are more simulation particles in these very densely
populated regions (near c=ϕ) in the CN method, while the DW
method produces results more fitting the theoretical predications
for these particles in less-populated regions (the two edges of the
computational distributions). And, for these particle in less-
populated regions (especially at the right edge of compositional
distributions), their compositional distributions from the CN
method fit more the predictions from eq 20 with χ = χ0 while the
results of the DW method approximate to the theoretical
predications using χ = χsteady-state. These findings validate the
availability of the theoretical models, and, on the other hand,
provide the evidence in support of our argument that the
differentially weighting methodology and the shift action are
essential for describing accurately the mixing of components
within particles.
The distributions of component A within the full range, which

is calculated as N(c)/N/(c+�c�), against the mass fraction of
component A(c) is shown in Figure 6, whereN(c) is the number
concentration of particles having A-component mass fraction of
c, N is the total number concentration, c+ and c� are respectively
the upper and lower limit of a interval of c. It is clear that the CN
method is unable to track these particles with low number
concentrations. On the contrary, the DW method is capable

Figure 6. Compositional distributions within full range at several time-moments.
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of capturing more accurately the process of component mixing
within not only these particles (e.g., these particles whose c
approximates to ϕ) which are comparatively uniformly mixed
and occupy the large number share in particle population but
also these particles (e.g., these particles whose c approximates
0 or 1) which are not or weakly mixed in composition and are
less-populated. These results further support the power of the
DWmethod as compared to the CN method. From Figure 6 it
is found that the compositional distribution becomes nar-
rower and narrower along with the process of aggregative
mixing, which shows the degree of component mixing is better
and better, and the mass fraction of component A in any
particle is closer and closer to the overall mass fraction of
component A, ϕ.
3.3. Composition-Dependent Aggregative Mixing. In real

cases, the Brownian aggregation kernel in the free-molecular
regime is composition-dependent because the component’s
density is different. Now the kernel is a function of the sizes of
two interacted particles and their densities, which are associated
with component amounts within the particles. The reference case
described in Section 3.2.1 is still simulated by the DW method,
except that FA 6¼ FB. Here, FA = 7.87� 103 kg m�3, FB = 21.45�
103 kg m�3, thus mA0 = 4.1207 � 10�24 kg, mB0 = 8.9849 �

10�23 kg, ϕ = 0.2922, χ0 = 6.0321� 10�24, χ0/mA0 = 1.4638, τ =
1.6342 � 10�7 s.
We first plot the evolution of χ and S.I. in Figure 7. As

expected, the χ is time invariant at the larger extents of evolution,
and S.I. eventually scales as 1/m. And, the three-stage time
evolution of χ (i.e., 0 < t < τ, τ < t < 12.7τ, t > 12.7τ) still holds. By
the way, we point out the self-preserving distribution in terms of
either the mass of whole particle or the mass of one component is
still obtained while large size particles are formed. The composi-
tional distributions with selected intervals are also shown in
Figure 8. The compositional distributions still follows Gaussian
function and can be fitted using eq 20, although now it is
composition-dependent kernel. It is deduced that these conclu-
sions on the time evolution of χ, S.I., and compositional
distributions should be valid for any composition�independent
or�dependent kernel. Matsoukas et al. have similar conclusion.7

4. CONCLUSIONS

In this paper, the differentially weighted Monte Carlo (DW-
MC) method is used to simulate bicomponent aggregative
mixing in spatially homogeneous systems. The method allows
the use of differentially weighted simulation particles, in such a
way that more simulation particles with less private weights are
assigned to represent these sparse regions (for example, two
edges of compositional distributions), and the number of simula-
tion particles in dense regions can be effectively reduced by
increasing their weights. Another feature of the DWMC method
is to use so-called shift action which is capable of regulating a
limited number of simulation particles so that they are distributed
homogeneously over composition space. In the original shift
action, removing simulation particles by a stochastic game adds
random noise to the real particle population because the removal
probability of simulation particles in dense regions is the same,
independent of their private weights and number density. In the
new shift action, the removal probability of a simulation particle
in a densely populated section depends on its private weight and
the number of simulation particles in the section. The more
simulation particles there are in the section, the larger the
removal probability these simulation particles have; the smaller
the weight of the simulation particle is, the larger the removal
probability it has. The cumulative probability method is used to
first choose a densely populated section, then choose a simula-
tion particle to be removed from the section. Furthermore, the
number of simulation particles added into less-populated regions
is equal to that of simulation particles removed from densely
populated regions in such a way that the total number of
simulation particles is kept constant throughout the simulation.
These new features (especially, the differentially weighting
scheme and the improved shift action) results in low statistical
noise for simulating aggregative mixing of multiple components.

From a comparison of the differentially weighted MC and the
constant-number method (a typical equally weighted MC) with
theoretical predictions, it is found for composition-independent
aggregative mixing that the constant-number method demon-
strates obvious errors in the degree of mixing and compositional
distributions, especially at larger times. In the constant-number
method, the degree of mixing (mass-normalized power density of
excess component A, χ) will gradually deviate from the steady-
state value of χ predicted by theory at larger times; and the
segregation index (χ/m) will tend to be stable along with time
evolution while it is theoretically predicted to be inversely

Figure 7. Power density of excess component A (χ) and segregation
index (χ/m) for composition-dependent aggregative mixing.

Figure 8. Compositional distributions within selected intervals for
composition-dependent aggregative mixing.
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proportional to the mean mass of particles (m). Correspond-
ingly, the Gaussian-type compositional distributions predicted
by the constant-number method have the wrong variance (χ/m).
On the contrary, the simulation results from the DWMCmethod
agree well with the theoretical predictions, due to their high
precision in these less-populated regions where the equally
weighted MC methods place insufficient simulation particles to
obtain an inaccurate solutions. It is worth noting that, although
the constant number method exhibits low resolution for particles
in less-populated regions of compositional distributions, it is
more accurate at the peak of compositional distributions since
there are more simulation particles in these very densely popu-
lated regions. Finally, theDWMCmethod is utilized to simulate a
realistic case of composition-dependent aggregative mixing
where Brownian aggregation kernel is associated with the sizes
of two interacted particles and their component amounts. The
results show that the degree of mixing becomes steady when the
size distributions and compositional distributions reach the the
self-preserving state, and the compositional distributions satisfy
Gaussian function as in composition-independent aggregative
mixing (where the Brownian aggregation kernel is a function of
the sizes of two interacted particles).

Worth noting is, although in this paper the DWMCmethod is
utilized to simulate typical cases of aggregative mixing with the
Brownian aggregation kernel in the free-molecular regime, it
should be effective for aggregative mixing with any kind of
kernels. It can be deduced that the DWMC method and the
improved shift action work well for other cases. The functionality
of the DWMC method and the improved shift action is inde-
pendent of aggregation kernels and initial conditions.
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