Self-assembly template combustion synthesis of a core–shell CuO@TiO2–Al2O3 hierarchical structure as an oxygen carrier for...

Article in Combustion and Flame · May 2015

DOI: 10.1016/j.combustflame.2015.05.006

4 authors, including:

Zuwei Xu
Huazhong University of Science and Technology

20 PUBLICATIONS 80 CITATIONS

Haibo Zhao
Huazhong University of Science and Technology

167 PUBLICATIONS 1,439 CITATIONS

Some of the authors of this publication are also working on these related projects:

- Phase transition mechanism and composition regulation for TiO2 nanoparticles in flame synthesis

 View project

- Chemical Looping Combustion

 View project
Self-assembly template combustion synthesis of a core–shell CuO@TiO2–Al2O3 hierarchical structure as an oxygen carrier for the chemical-looping processes
Zuwei Xu, Haibo Zhao *, Yijie Wei, Chuguang Zheng
State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China

Abstract
Chemical looping combustion (CLC) and chemical looping with oxygen uncoupling (CLOU) are the most promising technologies for capture of CO2 at a low cost. CLC and CLOU involve cyclic reduction and oxidation of a solid oxygen carrier (OC) to transfer active oxygen from air to carbon-based fuels for combustion with the inherent feature of isolating CO2. One key issue with these technologies is to manufacture a high-performance, economical and practical OC material. In this paper, we propose a self-assembly template combustion synthesis (SATCS) method for preparing a hierarchical structure copper-based OC, Cu-rich, Al2O3-supported and TiO2-stabilized in a core–shell microarchitecture. The selection of raw materials and the rational design of OCs are based on the density functional theory (DFT) calculations and the classical Derjaguin–Landau–Verwey-Overbeek (DLVO) theory, respectively. The spontaneous aggregation between α-Al2O3 microparticles (μm-Al2O3) and rutile TiO2 nanoparticles (nm-TiO2) is driven by the van der Waals attractive and electrostatic attractive forces to form core(Al2O3)-shell(TiO2) hard templates in the wet precursor containing copper nitrate and urea. Upon calcination of the dried precursor in air, fewer nitrogen oxides (NOx) are released, demonstrating an environment-friendly fabrication process, whereby a highly dispersed and high-loading Cu-based crystalline layer is deposited on the nanostructured shell. A representative CuO@TiO2–Al2O3 OC (17.5 wt% Al2O3, 5 wt% TiO2) possesses hierarchical porosity and an interconnected framework and exhibits excellent performance of the reactivity, stability, oxygen release/uptake capacity and mechanical strength in the high-temperature redox cycles. The proper addition of TiO2 nanoparticles is effective in preventing the formation of copper aluminates (CuAl2O4 and CuAlO2) and inhibiting the sintering of active component grain. In addition, the rational design method and novel synthesis technique allow a mass production of various metal oxide composites used for chemical looping processes with CO2 capture and clean utilization of energy.

1. Introduction
The chemical looping (CL) technique is an attractive solution for concentration and separation of CO2 from fossil fuels with a low economic cost and energy penalty. Several variants of chemical looping technologies are available, e.g., chemical looping combustion (CLC) [1], chemical looping with oxygen uncoupling (CLOU) [2], chemical looping air separation (CLAS) [3], chemical looping reforming (CLR) [1], and chemical looping hydrogen production (CLH) [4]. Typically, in a CL system, two reactors, a fuel reactor (FR) and an air reactor (AR), are interconnected while isolated from each other in a reaction atmosphere. Oxygen carrier (OC) particles circulate to carry active oxygen from air to carbonaceous fuel between the AR and the FR [5]. Thus, the CL processes are involved with a cyclic reduction–oxidation reaction, and the OC particles are required to demonstrate high reactivity, thermal stability, mechanical strength, fluidizability, environmental friendliness, low cost, and resistance to agglomeration and sintering.

Copper oxide has received a great deal of attention as an efficient OC because it has some advantageous characteristics of high reactivity, high oxygen transport capacity, suitable equilibrium partial pressure of oxygen at temperatures of interest for combustion (800–1000 °C), stable recyclability of oxygen release and uptake, moderate price, and being exothermic for fuel combustion in the CLR [1,6]. However, CuO suffers from a tendency toward sintering and agglomeration upon full reduction, forming metallic copper with a rather low melting temperature (1083 °C). Lower
operating temperatures (800–850 °C) in the FR and/or AR are advantageous for resistance to sintering, agglomeration and defluidization but disadvantageous for fast reaction kinetics and high energy utilization efficiency [7,8]. Usually, the active component CuO is supported by different inert materials of, e.g., ZrO2, MgAl2O4, Al2O3, SiO2, MgO, TiO2, and sepiolite to withstand a higher temperature (such as 900–1200 °C) [2,7,9–14]. Several Cu-based OCs have been developed using different supports and preparation methods. Among various supports for the CuO oxygen carriers, Al2O3 has received considerable attention for increasing the temperature resistance and durability of Cu-based OCs [9,14–16], owing to its high melting point, high mechanical strength, and low cost.

The support is known to have a great influence on the behavior of the OCs. In the case of Al2O3 as a support, the CuAl2O4 spinel is invariably formed during OC preparation at high temperatures (approximately 900–1200 °C) by the interaction between CuO and Al2O3, resulting in the partial loss of CuO [7,16]. Although CuAl2O4 is fully reducible and can also release gaseous O2 under lower oxygen partial pressure and high-temperature conditions, the reaction rate is much lower than the reaction rate of CuO [17]. This interaction needs to be avoided to retain CuO as an active phase for CLOU, however, but the interaction seems to be difficult to inhibit in our previous investigations [18,19]. Using copper nitrate and aluminum isopropoxide as raw materials, CuO/CuAl2O4 rather than the expected CuO/Al2O3 was produced by calcining the Cu(OH)2/y-Al2O3 sol–gel precursor at 1000 °C for 10 h [18]. CuO/CuAl2O4 OC (CuO, 60 wt%;CuAl2O4, 40 wt%) was able to release and absorb gaseous O2 repeatedly at combustion temperatures (800–1000 °C) without agglomeration and sintering and could attain nearly complete conversion of coal in the FR. However, there was actually 17.5 wt% active CuO loss because full CuAl2O4 was not involved with redox during the CL process. Even earlier, Chuang et al. [7] also found that there was an interaction between Al2O3 and CuO to form CuAl2O4 under high-temperature conditions. Recently, we found that once the sol–gel-derived-CuO/CuAl2O4 was fully reduced to metal Cu and Al2O3 by carrying out a deep reduction with H2, CuAl2O4 would not be generated again in subsequent redox reactions [20]. This phenomenon may be attributed to the physical restructuring of OC particles after deep reduction. Although CuO can be more fully utilized in this way, there is a higher risk of agglomeration and sintering when high metal Cu content appears.

It is thus necessary to minimize the interaction between the support and the active component during the preparation process. Imtiaz et al. [21] employed the co-precipitation technique to synthesize Cu-based and Al2O3-stabilized OCs using KOH as the precipitating agent, and the OCs were calcined and evaluated at 800 °C. The residual K+ ions can inhibit CuAl2O4 formation, but the inhibiting effect was not examined at higher calcination or redox temperatures (e.g., 900–1000 °C). Similarly, Song et al. [22] discovered that the presence of Na+ ions was effective in inhibiting the formation of copper aluminates (CuAl2O4 or CuAl2O3) and stabilizing the copper phase in an amorphous support over multiple redox cycles. However, the Cu–Al OC with a high loading of CuO of 82.5 wt% may agglomerate in the CO-fueled CLC when cycled at temperatures above 900 °C and demonstrated a considerable attrition rate. Other commonly-used supports, e.g., TiO2, do not react with CuO. However, the resulting Cu-based OCs demonstrated a low mechanical strength and an agglomeration problem [11,23]. As for the other supports (MgAl2O4 and ZrO2), the evaluations of the OCs with respect to price and mechanical stability are not satisfactory [10,11,24].

To summarize, a single material as a support has its limitations within chemical stability, mechanical strength and temperature resistance. However, a composite support is combined from two or more constituent materials with different physical or chemical properties and may produce some substantial complementary characteristics different from the individual components to improve the comprehensive performance of Cu-based OCs. Recently, Adánnez-Rubio et al. [10] examined the Cu-based OC materials that were manufactured by spray-drying from water-based
slurries of a mixture of CuO with MgAl2O4/TiO2, MgAl2O4/SiO2, and TiO2/SiO2 in terms of their CLOU effect. Each of the given OCs could not simultaneously satisfy the comprehensive performance requirements including but not limited to high mechanical stability, low attrition rate and good reactivity. Therefore, extensive efforts are required to develop an OC material with all aspects of performance. On the one hand, it is important to understand the interaction between the active phase and the support phase for screening appropriate raw materials. On the other hand, it is necessary to pay attention to the synthetic route for designing the microstructure of OC particles. In this work, according to previous experimental research and theoretical calculations, we selected Al2O3 as the main support and TiO2 as the minor support of the CuO component and designed a novel CuO@TiO2–Al2O3 OC material based on the self-assembly between TiO2 nanoparticles (nm-TiO2) and Al2O3 microparticles (μm-Al2O3), where nm-TiO2 particles were coated on the surface of μm-Al2O3 particles to inhibit the interaction of active phase CuO with the main support Al2O3.

The OCs were usually synthesized on an experimental scale utilizing a well-rounded chemical or physical method. The alternative methods for OC preparation included sol–gel, impregnation, co-precipitation, hydrothermal synthesis, low heating solid state reaction, freeze granulation, combustion synthesis, mechanical mixing, etc. [1,7,11,18,25–27]. The liquid preparation methods (e.g., sol–gel method), which usually use a nitrate solution of the target metal oxides as precursors, can attain a high purity, accurate stoichiometry of the products, controllable microstructure, and homogeneous mixing of components almost at the molecular level, yielding a high degree of dispersion and high loading of active metal oxide in the support after calcination. However, the liquid preparation methods usually suffer from a long preparation period and complex preparation processes that are almost involved in drying and granulation. In addition, the environmental influence should be paid close attention in the productive processes of OCs. Typically, nitric oxide (NOx) emissions result from the decomposition of nitrates during OC preparation processes. We proposed a sol–gel combustion synthesis (SGCS) method for the preparation of Fe2O3/Al2O3 and CuFe2O4 OC particles [28]. The self-propagating high temperature synthesis (SHS) relies on the combustion reaction between oxidizer (metal nitrates) and fuel (urea, citric acid or glycine, etc.) [29]. The SGCS method combines the advantages of sol–gel and SHS, including rapidity and simplicity, low energy consumption, molecular mixing of the precursors, and good resistance to sintering [30]. The SGCS method has the potential to reduce or even eliminate the NOx emissions from OC synthesis. In this paper, we further develop a novel self-assembly template combustion synthesis (SATCS) method based on the SGCS method for preparation of CuO@TiO2–Al2O3 OC particles. Compared with conventional combustion synthesis (e.g., self-propagating high-temperature synthesis (SHS), solution combustion synthesis (SCS) [31]), the proposed SATCS involves a particular process in which self-assembly of support particles is driven by van der Waals and Coulombic interactions to form orderly core–shell structures as hard templates for efficiently dispersing and supporting active component.

2. Theoretical insights into OC design

2.1. Density functional theory (DFT) investigations for CuO-support interactions

A fundamental understanding of the microcosmic mechanisms of oxygen release and the interactions of different phases in OC particles could help rationalize the design of high performance OCs. In our recent papers [17,32], the periodical density functional theory (DFT) calculations were used to investigate the effects of different supports (TiO2, ZrO2, MgAl2O4, and CuAl2O4) on the performance of Cu-based OCs (several popular support materials). The aim of DFT calculations was to clarify some basic factors in determining the OC reactivity and sintering resistance. A lower energy barrier for the oxygen release process favors the OC reactivity, and a higher adsorption energy between support and CuO benefits the OC sintering resistance. The corresponding energy barriers for oxygen release and adsorption energies of CuO/TiO2 and CuO/CuAl2O4 were presented in Fig. 1. The oxygen release proceeds in two steps: (i) the formation of an O2 complex on the CuO nanocluster; and (ii) the desorption of molecular O2 to the gas phase. The energy barriers for CuO/TiO2 in the two steps are always lower than the energy barriers of CuO/CuAl2O4 in the whole oxygen release process, but the adsorption energy of CuO/TiO2 is relatively weak. In this context, TiO2 as a support benefits the reactivity of CuO. However, TiO2 is not particularly satisfactory at sintering resistance for OCs due to a lower adsorption energy (absolute value) and melting point. Generally, it is necessary to achieve a compromise between the oxygen release energy barrier and the adsorption energy of CuO on the support to attain favorable performance of Cu-based OCs. So we designed a composite support combining TiO2 with Al2O3 via a self-assembly template combustion synthesis in which TiO2 and Al2O3 serve as an enhancer for the reactivity and sintering resistance of Cu-based OCs.

2.2. Zener pinning theory for analyzing CuO sintering

Sintering of OC particles is essentially solid-state diffusion driven by the decrease of grain surface energy, and its kinetics depends not only on physicochemical properties (e.g., specific surface energy, adsorption energy, etc.) of component materials but also on the particle size and content of support. The Zener pinning theory [27,33] provides a route to understand the CuO grain radius growth kinetics, as follows [33]:

$$\frac{\text{d}R}{\text{d}t} = ax^{n} \left[\frac{2\gamma}{R} \left(\frac{3f}{2r} \right) F_{\text{interact}} \right]$$

where R is the grain radius of CuO [m], a is the geometry shape factor, M is the solid-state diffusion factor, γ is the specific surface energy of CuO [J m$^{-2}$], f is the volume fraction of support, r is the radius of support particles [m], F_{interact} is the interaction force between support and CuO, simplified as the specific surface energy of support material [J m$^{-2}$]. The performance and characteristics of OCs can be interpreted qualitatively using Eq. (1). When the growth rate is equal to 0 (i.e., $\text{d}R/\text{d}t = 0$, termination of growth), the maximum radius of the CuO grain is attained and can be deduced as

$$R_{\text{max}} = 4\left(\frac{\gamma}{F_{\text{interact}}} \right) \left(\frac{1}{f} \right)$$

Generally, there is not much difference in surface energy between CuO and some popular support materials, namely, $\gamma/F_{\text{interact}} = 1$ (e.g., for CuO/TiO2, $\gamma/F_{\text{interact}} = 0.88$ [27,34]; for CuO/CuAl2O4, $\gamma/F_{\text{interact}} = 0.53$ [17,34]), whereas the variation of support particle size (r) and fraction (f) can effectively influence the maximum radius of the CuO grain. Obviously, the smaller support particle size (r) can inhibit grain growth better in a high-loading active component. It is expected that nanolevel support particles (TiO2 nanoparticles in this paper) possess an outstanding effect for preventing active component sintering.

2.3. Particle dynamics in aqueous suspensions of precursors

Liquid-phase preparation methods have irreplaceable advantages in raw material mixtures and formation of precursors.
However, a mediocre hybrid of raw materials is not infeasible because it is necessary to avoid direct contact of CuO and Al₂O₃ in OC particles, and particle coating is supposed to be a desirable way to attain this aim. Core–shell composite particles, bigger Al₂O₃ particles coated with smaller TiO₂ particles (here, Al₂O₃ microparticles and TiO₂ nanoparticles are considered) can be achieved by enhancing hetero-coagulation in the TiO₂–Al₂O₃ binary dispersions. The ability to control particle stability and assembly is crucial for the effective processing of precursor suspensions. The well-known Derjaguin–Landau–Verwey–Overbeek (DLVO) theory is most commonly used to describe the thermodynamic interactions between two particles in a suspension [35,36]. The DLVO total interaction energy (V₁) is the sum of the van der Waals attractive (Vvdw) and electric double layer repulsive/attractive (Vedl) potentials that exist between particles as they undergo Brownian motion.

\[V₁ = V_{vdw} + V_{edl} \]

The van der Waals attractive energy and electrical double layer repulsive/attraction energy are expressed as [37]:

\[V_{vdw} = -\frac{A_H}{6} \left[\frac{2r_ir_j}{R_i^3 - (r_i + r_j)^3} + \frac{2r_ir_j}{R_j^3 - (r_i - r_j)^3} + \ln \left(\frac{R_i^3}{R_i^3 - (r_i + r_j)^3} \right) + \ln \left(\frac{R_j^3}{R_j^3 - (r_i - r_j)^3} \right) \right] \]

\[V_{edl} = \begin{cases} 4\pi\epsilon_i\epsilon_0\Psi_{ij} \left(\frac{r_i}{r} \right) \ln[1 + \exp(-k\ell)], & K\ell \geq 5 \\ 4\pi\epsilon_i\epsilon_0\Psi_{ij} \left(\frac{Y_{ij}}{Y} \right)^{\frac{2}{3}} \exp(-k\ell), & K\ell < 5 \end{cases} \]

where \(A_H \) is the Hamaker constant [J], \(r_i \) and \(r_j \) are the radii of particle \(i \) and \(j \), respectively [m], \(R_i \) is the center-to-center particle separation [m], \(l \) is the distance between the surfaces of two interacting particles [m], \(\epsilon \) is the reciprocal of the thickness of the double layer [m⁻¹], \(\epsilon_0 \) is the relative dielectric constant of the medium and \(\ell \) is the permittivity in vacuum, \(\Psi \) is the surface potential [V], estimated by the zeta potential of the charged particles, and \(Y \) is the dimensionless effective surface potential, \(Y = 4 \tan \theta = \Psi / (4k\ell_0) \).

The Al₂O₃ and TiO₂ binary particle suspension can involve three different types of interactions: Al₂O₃–Al₂O₃ (A–A), Al₂O₃–TiO₂ (A–T), and TiO₂–TiO₂ (T–T). Based on the DLVO theory, it is possible to reach stabilization for like particles (i.e., A–A or T–T) due to like-charged repulsion, whereas charge heterogeneity for unlike particles can promote fast coagulation of A–T. The greater the difference between the isoelectric points (IEPs) of particles, the better coating effect can be achieved in aqueous suspension [38]. After testing a variety of TiO₂ materials, we found that flame-synthesized rutile TiO₂ nanoparticles (nm-TiO₂) have resulted in a greater difference of IEP values from the α-Al₂O₃ microparticles (μm-Al₂O₃). Figure 2 shows the zeta potential as a function of pH for μm-Al₂O₃ and nm-TiO₂, measured using a micro-electrophoresis apparatus (Powerech J949H, Shanghai Zhongchen Digital Technical Apparatus Co., Ltd, China), where the IEP values of nm-TiO₂ and μm-Al₂O₃ are approximately 3.4 and 9.0, respectively. The zeta potential of the particle was correlated with the pH level and decreased with increasing pH. At pH 6, the biggest potential difference with opposite charges appeared.

In the current experiments, the total interaction energy (V₁) under different pH conditions was calculated based on the expressions in Eqs. (3)–(5), using parameters described in Table 1. For unlike particles (A–T), the van der Waals force and electrostatic force together are responsible for aggregating owing to simultaneous attraction, and particles have a maximum net attractive energy at pH = 6. On the other side, agglomeration between like particles (A–A or T–T) is most significant near the IEP as the electrical double layer diminishes, and the attractive energy due to van der Waals forces becomes dominant [37]. As the suspension pH deviates from the IEP, the electrical double layer thickness increases as does the surface charge (either positive or negative) and thus greater repulsion and smaller agglomerates are expected for like particles. The above behavior was illustrated in Fig. 3. We examined the microstructure (TEM images) of steady agglomerates from the Al₂O₃–TiO₂ suspension of sample B at pH = 5 and 6, respectively, as shown in Fig. 4. Here we have to show smaller Al₂O₃ particles and therefore possess clearer TEM micrographs because electron beams are difficult to pass through thick samples in a TEM. The TiO₂ layer (green-line profiles) was thinner and uneven on the Al₂O₃ core (red-line profiles), and there were obvious aggregations for nm-TiO₂ at pH = 5 (Fig. 4a), whereas the Al₂O₃ core was coated with a high coverage density of the nm-TiO₂ cluster spreading outward from the core surface to the shell external boundary at pH = 6 (Fig. 4b). The experimental observations were consistent with the DLVO calculations of particle interactions, indicating that the pH level has significant effects on the formation of the core(Al₂O₃)–shell(TiO₂) structure, so the electric double layer force is a critical driver of the self-assembly. Consequently, when the pH level of the dispersions was adjusted to 6, the interaction between particles achieved an optimal coating effect (enhancing
hetero-coagulation and diminishing homo-coagulation) to quickly and efficiently form core–shell structured templates.

3. Experimental

3.1. Synthesis of Cu-based OCs

In this study, we synthesized four types of Cu-based OC materials (marked as A, B, C and D, 100 g of each) with same content of CuO (77.5 wt%), and different contents of TiO$_2$ and Al$_2$O$_3$, and details of the samples were shown in Table 2. Commercial nm-Al$_2$O$_3$ particles were selected as the main component of the support, whereas nm-TiO$_2$ particles were deposited on the surface of nm-Al$_2$O$_3$ by the electrostatic self-assembly in precursors to modify and stabilize the support. A schematic sketch of the individual synthesis steps was shown in Fig. 5, and detailed descriptions were given below.

(1) The nm-TiO$_2$ was prepared using flame synthesis technology – a single step, a continuous and scalable process. The gas flame synthesis facility was designed, as shown in Fig. 6, in which a four-concentric-tube burner was fed with TiCl$_4$ (vapor) and N$_2$ (as a dilute gas and carrier gas), CH$_4$ (fuel), O$_2$ (oxidizer), and N$_2$ (sheath gas), from the outside to the center. More detailed operating conditions and experimental data about the flame synthesis are available in reference [40]. The co-flow diffusion CH$_4$ flame established a controllable and stable high-temperature field that provides the energy needed for the nanoparticle synthesis, including the oxidation of the TiCl$_4$, the crystal transition and morphology evolution of particles. The nm-TiO$_2$ with complete rutile phase (see Fig. 7), and a good crystalline nature within the size range 10–50 nm (its morphology as shown in Fig. 8) can be obtained by regulating gas flow rates.

(2) The calculated amount (according to the expected mass ratio with respect to Table 2) of nm-Al$_2$O$_3$ (particle size 1–75 nm, Sinopharm, AR level) and nm-TiO$_2$ powder was uniformly dispersed in 300 mL hot water (80°C, water bath heating). After stirring one hour, the suspension pH level was readjusted to 6 by adding dilute nitric acid or ammonia solution.

(3) 97.5 g of urea (CO(NH$_2$)$_2$, crystals, Sinopharm, AR level) was added to the slurry to stabilize the templates by increasing the steric hindrance of the dispersion system. In addition, the urea was used as a fuel burned with copper nitrate in the subsequent combustion synthesis process.

(4) 235.4 g copper nitrate trihydrate crystals (Cu(NO$_3$)$_2$·3H$_2$O, Sinopharm, AR level) was added to the slurry to stabilize the templates by increasing the steric hindrance of the dispersion system. In addition, the urea was used as a fuel burned with copper nitrate in the subsequent combustion synthesis process.
Table 2
Oxygen carriers prepared in this work.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Raw materials (g)</th>
<th>Active phase</th>
<th>Support phase</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>μm-Al₂O₃</td>
<td>nm-TiO₂</td>
<td>CO(NH₂)₂</td>
</tr>
<tr>
<td>A</td>
<td>22.5</td>
<td>0</td>
<td>97.5</td>
</tr>
<tr>
<td>B</td>
<td>17.5</td>
<td>5.0</td>
<td>97.5</td>
</tr>
<tr>
<td>C</td>
<td>12.5</td>
<td>10.0</td>
<td>97.5</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>22.5</td>
<td>97.5</td>
</tr>
<tr>
<td>E (sol–gel)</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Fig. 5. Schematic of the different steps of synthesis of Cu-based OCs using the SATCS method. A series of simplified physical models for the structure fabrication was shown in the bottom row.

Fig. 6. Schematic diagram of the flame synthesis of rutile nm-TiO₂ (product nm-TiO₂ as an additive to self-assembly template combustion synthesis OCs).
The wet precursor was dried in an electrically heated drying oven (80°C for 24 h), and then the dried precursor was transferred into a temperature-programmed muffle furnace and ignited at 200°C in air. The combustion synthesis method can utilize the inner heat source to accelerate the drying and evolution from pyrolysis and achieve a high calcination temperature. The as-burned precursor proceeded to be calcined in the muffle furnace at 950°C for 2 h. Then, the temperature dropped to room temperature by the natural cooling.

Finally, the conglomeration was ground into particles and sieved to yield the OC product in the size range of 0.125–0.180 mm.

In addition, a sol–gel-derived CuO/CuAl2O4 OC (i.e., sample E as shown in Table 2) with the same size range was prepared according to our previous work [18], compared with the self-assembly template combustion synthesis OCs in a contrastive investigation.

3.2. Characterization techniques

The mechanical strength of some fresh and used samples, determined using a digital force gauge (Shimpo, FGJ-5), was taken as the average value of 30 measurements of the force needed to crush an OC particle. The attrition rates of fresh OCs were determined in a standard abrasion tester (a stainless steel cylinder of length 14.5 cm and diameter 12.0 cm, with a 1.5 cm baffle), and rotated on a ball-mill roller for 50 min at a rate of 10 rpm. The specific surface area and specific pore volume of OCs were characterized in a physisorption apparatus (Micromeritics ASAP-2020) by multipoint nitrogen adsorption at 77 K using the Brunauer–Emmett–Teller (BET) and the Barrett–Joyner–Halenda (BJH) methods, respectively. The determination of particle size distribution (PSD) was made with a laser diffraction particle size analyzer (Malvern Mastersizer 2000) that allows the size to range from 0.01 to 1000 μm. The crystalline phase species of the fresh and used OCs was determined using a powder X-ray diffractometer (XRD, Shimadzu X’Pert Pro) using Cu Kα radiation (2θ = 0.1542 nm, the accelerating voltage of 40 kV and the tube current of 40 mA) in a 2θ angular range of 20–90°. The microstructure of OC samples was analyzed in a field emission scanning electron microscope (FSEM, FEI Nova Nano SEM 450) coupled with an energy-dispersive X-ray spectrometer (EDS, Oxford X-Max 50). Some samples were also observed in a transmission electron microscope (TEM, FEI Tecnai G2 20). To analyze the internal section of the OC particles and the morphology of the inert support, we designed two methods to prepare microscopic samples: (1) OC particles were embedded in epoxy resin and polished to obtain the cross-section of particles; (2) OC particles were immersed in an ammonia-ammonium carbonate solution (ammonia with a concentration of 2.8 mol L⁻¹, [NH₄⁺]:[NH₃] = 0.6), in which the active species (CuO) was dissolved to obtain the framework of the inert support. The internal microstructures of the particles and element distribution in the exposed cross-section were characterized using BSE (backscattered electron) images and EDS maps, and the skeletons of the dissolved CuO particles were used to analyze the structure of TiO₂–Al₂O₃ composite support using SE (secondary electron) images.

3.3. Thermal analysis

The combustion synthesis and precursor calcination processes were investigated in a simultaneous thermogravimetric-differential thermal analyzer (TG-DTA, BOIF WCT-1D) combined with a Fourier transform infrared spectrometer (FTIR, Bruker Tensor 27). The sample was heated in flowing air (120 mL min⁻¹, STP) from the room temperature to 1000 °C with a high heating rate of 10 °C min⁻¹ to better simulate the dried precursor calcinations process in the muffle furnace, and held at 1000 °C for 30 min. The pyrolysis gases of solid precursors were instantly introduced from the TG-DTA to the FTIR by a heat tracing pipe at 150 °C to avoid the condensation of steam. Spectra were recorded with a temporal resolution of 10 s. The infrared absorption band was in the range of Fig. 7. XRD pattern of flame-synthesized nm-TiO₂.

!Fig. 7. XRD pattern of flame-synthesized nm-TiO₂.

!Fig. 8. Typical FSEM (a) and TEM (b) micrographs (with a magnification of 200,000 in the original images) of nm-TiO₂ samples produced using flame synthesis.
600–4000 cm$^{-1}$. Because the gas concentration was proportional to
the absorbance with a value < 0.7, the absorbance could be used to
categorize the concentration of the gas products. These formed
OC samples were also examined in terms of their CLOU behavior
using the TG-DTA, with the temperature increased from the room
temperature to 1000 °C at a heating rate of 5 °C min$^{-1}$ in N$_2$ atmo-
sphere (120 mL min$^{-1}$, STP).

3.4. Cyclic oxygen release and uptake tests

The capacity for repeated release and uptake of gaseous O$_2$ was
investigated by successive oxygen release/uptake cycle tests in the
TG-DTA. A small amount (~30 mg) of each OC sample was placed in
a zirconia sample holder and brought from the room temperature to 900 °C at a heating rate of 5 °C min$^{-1}$ under air flow. After
stabilization, 15 cycle tests were conducted continuously under conditions of alternating atmospheres, and temperature was held
at 900 °C. The oxygen release and uptake atmosphere was pure
N$_2$ and 21 vol% O$_2$ (balanced with N$_2$), respectively, both with a
flow rate of 120 mL min$^{-1}$ (STP) for 20 min.

3.5. Cyclic reduction and oxidation tests

Temperature-programmed reduction (TPR) and temperature-programmed oxidation (TPO) studies were performed in a chemisorption analyzer (Micromeritics AutoChem II 2920). Each sample was heated in a 10 vol% H$_2$/Ar flow (TPR) or 3 vol%
O$_2$/He flow (TPO) with 50 mL min$^{-1}$ (STP) from the room tempera-
ture to 900 °C at 10 °C min$^{-1}$, and the final temperature was kept at
900 °C for 30 min. The off-gas was first led to a cold trap to remove
the steam and then was introduced to the thermal conductivity
detector (TCD). A TPR-TPO-TPR three-stage test with 150 mg of
sample was conducted. TPR/TPO analysis was used to provide
information on the reducibility species of the OC.

The cyclic redox tests of many more OC particles were carried out in a batch fluidized bed reactor (FBR) with methane as gaseous
fuel to investigate the reactivity of OCs in a fluidization environ-
ment and the behavior with respect to agglomeration and attrition
phenomena. An overview of the fluidized bed system was pre-
icted in Fig. 9. The detailed description of this system can be
found in our published papers [41,42]. The FBR was fed with a
batch of 20 g OC particles, and then the bed was heated to
850 °C, fluidized by air to ensure full oxidation of OC particles
before cyclic redox tests. The OC particles were then exposed to
10 successive redox cycles with each cycle consisting of four stages: (1) purging with inert N$_2$ (800 mL min$^{-1}$, STP) at 950 °C for 3 min; (2) reduction of the OC in CH$_4$ (500 mL min$^{-1}$, STP) at
950 °C for 40 s; (3) purging with inert N$_2$ (800 mL min$^{-1}$, STP) at
950 °C for 15 min; (4) oxidation of OC with air (800 mL min$^{-1}$, STP) at 850 °C for 20 min.

4. Results and discussion

4.1. Oxygen uncoupling of the OCs

Four samples (A, B, C and D) were examined in terms of their
CLOU behavior using the TG-DTA under the same experimental
conditions. The weight loss curves as a function of time, which
reflect the oxygen uncoupling capacity and reactivity of OCs,
were shown in Fig. 10. All the TG data were normalized from the
stable point at approximately 700 °C, at which the weight
became stable and gaseous O$_2$ release started. Clearly the OC (sam-
ple A) without adding nm-TiO$_2$, demonstrated the minimum final
weight loss (~6 wt%), whereas other oxygen carriers (samples B,
C, D) with the addition of nm-TiO$_2$ demonstrated a larger oxygen
transport capability, very close to the theoretical maximum value
of loss weight (7.75 wt%). The sample D, CuO/TiO$_2$, exhibited the
highest maximum reduction rate, followed by samples B, C and
A, and the experimental results were consistent with earlier DFT
predictions. CuAl$_2$O$_4$ appeared to be formed as a major phase
except CuO for sample A with the 60 wt% CuO–40 wt% CuAl$_2$O$_4$
mixture, according to the stoichiometric and XRD patterns (see
Section 4.4, Fig. 16). In the reduction stage, CuO was reduced to
Cu$_2$O and a small part of CuAl$_2$O$_4$ also decomposed into CuAlO$_2$,
Al$_2$O$_3$ and O$_2$ according to the following reaction:

$$
4\text{CuAl}_2\text{O}_4 \rightarrow 4\text{CuAlO}_2 + 2\text{Al}_2\text{O}_3 + \text{O}_2 \quad (\text{R1})
$$

For a fixed temperature, the equilibrium O$_2$ partial pressure and the
rate of gaseous O$_2$ release of CuAl$_2$O$_4$ is much lower than those of
pure CuO [15]. Consequently, sample A gave a much slower rate
of oxygen release, and the decomposition was not complete over
the isothermal stage at 1000 °C for 30 min. In practical CL processes,
fast cyclic reduction and oxidation of the oxygen carrier will be per-
formed by circulating between two reactors, so the slow kinetics of
O$_2$ release from CuAl$_2$O$_4$ are not favorable and essentially do not
contribute to the gaseous O$_2$ release. In contrast, samples B, C,
and D showed fast stages of weight loss up to approximately
7.75%, proving that the nm-TiO$_2$ additive is effective in preventing
the formation of CuAl2O4 spinel and improving the reactivity of Cu-based OCs.

Furthermore, to investigate the cyclic CLOU performance, 15 consecutive release-uptake cycle tests for four types of OCs were conducted in the TG-DTA at 900 °C (the TG curves shown in Fig. 11). Obviously, samples A (CuO/Al2O3) and D (CuO/TiO2) showed unstable patterns in the extent of reduction and oxidation reactions, whereas the Cu-based OC supported by the TiO2–Al2O3 composite demonstrated a good recyclability to release and absorb gaseous oxygen repeatedly. More specifically, reactivity evaluation was obtained through analyzing the TG data of the OC samples. The conversions of the OC reduction and oxidation as functions of time were calculated, respectively by:

\[
X_{\text{red}}(t) = \frac{m_{\text{ox}} - m(t)}{m_{\text{ox}} - m_{\text{red}}}
\]

\[
X_{\text{ox}}(t) = \frac{m(t) - m_{\text{red}}}{m_{\text{ox}} - m_{\text{red}}}
\]

where \(m_{\text{ox}}, m_{\text{red}},\) and \(m(t)\) are the OC weights at the fully oxidized state, the reduced form, and the actual weight at time \(t\), respectively. The theoretical oxygen transport capacity for the OC was defined as

\[
R_0 = \frac{m_{\text{ox}} - m_{\text{red}}}{m_{\text{max}}}
\]

The actual oxygen (AO) transport capacity was defined as

\[
R_{AO} = R_0 X_{\text{max}}
\]

where \(X_{\text{max}}\) is the maximum conversion in cyclic TG tests. The oxygen transport rate was

\[
r_O = R_0 \frac{dX}{dt}
\]

Figure 12 showed the actual oxygen transport capacities and rates in 15-cycle redox tests of the four samples. The oxygen transport rates were calculated as average values from 20% to 80% of the
conversion. There was a decrease in oxygen capacity for sample A with an increasing number of cycles. The mass of the oxidized and reduced state declined gradually with the cycle numbers. Factually, CuAl₂O₄ spinel was formed in the fresh sample A due to the solid–solid reaction of CuO and Al₂O₃ upon synthesis in air, and the product CuAlO₂ of CuAl₂O₄ decomposition (R1) even did not oxidize fully in the later O₂ uptake.

With respect to sample B, support on µm-Al₂O₃ (17.5 wt%) and nm-TiO₂ (5.0 wt%) showed the best stability. The amount of active component CuO always remained high-loading in the redox cycles, without observation of obvious XRD peaks of CuAl₂O₄ (see Section 4.4, Fig. 16) because the nm-TiO₂ shell prevented the interaction between copper and aluminum phases. The actual oxygen transport capacity of sample B maintained approximately 0.075 kg O₂/kg OC and was close to the theoretical value 0.0775 kg O₂/kg OC, corresponding well to the stable rates. The rate of O₂ release is dominated mainly by the crystalline CuO, and a higher content of crystalline CuO gives higher gaseous O₂ releasing capacity. A moderate declining tendency in oxygen release/uptake capacity was observed for sample C, and an ascending tendency in oxygen release/uptake capacity was observed for sample D. It was noted that sample D showed a very different tendency compared to others, and the oxygen release rate of each single cycle showed an increase with cycling progresses likely because of the development of fissures led to a rise in porosity and reaction surface. The reactivity increased up to a maximum value after several cycles and stabilized. It had previously been observed in ilmenite as an OC in CLC [43]. A similar effect was also observed in the field of carbonate looping for CO₂ capture where it was named “self-activation” [44]. When nm-TiO₂ was used for most or all of the support, the total oxygen release/uptake capacity was slightly less than expected. A possible reason for the discrepancy is that a high proportion of the TiO₂ additive is unfavorable for inhibiting sintering because the adsorption energy of TiO₂ is lower than the adsorption energy of the Al₂O₃ as in the above-mentioned DFT calculations. In addition, too many or too few nm-TiO₂ can be harmful to the formation of complete core–shell structures. For an excessive TiO₂ additive, nm-TiO₂ will form larger agglomerates in aqueous suspension, also not conducive to inhibiting sintering according to the Zener pinning theory. In this context, the experimental results should not be surprising because sintering would lead to a decline in the active oxygen capacity and oxygen release/uptake rate.

4.2. Reactivity and stability of the OCs

Based on TGA tests and physicochemical characterizations (see Section 4.3), sample B was the optimal one and most worth to be further investigated, and hereafter sample A or sample E was used as a baseline for comparative studies. For the TPR-TPO-TPR experiments of sample B at the chemisorption analyzer, the TCD curves of two TPR experiments (shown in Fig. 13) demonstrated similar
shapes with same peak numbers and approximate peak temperatures (approximately 300°C, attributed to the reduction reaction between CuO and H₂), meaning nearly the same amount of H₂ consumption and then good chemical stability for sample B. For sample A (used as a baseline for comparison with sample B), the TCD profiles of two TPR experiments exhibited a main peak approximately 300°C and a significantly smaller peak at higher temperatures (900°C for the 1st TPR and 600°C for the 2nd) due to the reduction reaction between CuAl₂O₄ and H₂. The two TPR tests also showed sample A is not stable in reactivity. From the TCD profiles of TPO experiments of the two samples, sample B absorbs more gaseous oxygen in the oxidation process.

We tested the CLC behavior of sample B with methane and resistance to agglomeration/sintering in a high-temperature (850–950°C) environment using a batch fluidized bed reactor. Sample E (sol–gel) was used as a comparison based on our previous systemic research for sol–gel synthesis OCs. Ten successive redox cycles were conducted using 20 g OCs where the particles were subjected to a flow of 500 mL min⁻¹ pure CH₄ for 40 s during the reduction period. The reactivity of a given OC during reduction with methane quantified in terms of OC conversion rate as a function of time was calculated from the outlet gas concentrations by [45]:

\[
\frac{dX}{dt} = \frac{1}{M_0P_{\text{tot}}} n_{\text{m,CH}_4}(4p_{\text{CO}_2,\text{out}} + 3p_{\text{CO},\text{out}} - p_{\text{H}_2,\text{out}})
\]

where \(M_0\) is the number of moles of active oxygen in the unreacted oxygen carrier; \(P_{\text{tot}}\) is the total pressure; \(n_{\text{m,CH}_4}\) is the molar flow of dry CH₄ entering the reactor; \(p_{\text{CO}_2,\text{out}}, p_{\text{CO},\text{out}}, \) and \(p_{\text{H}_2,\text{out}}\) are the outlet partial pressures of CO₂, CO, and H₂, respectively, after removal of water vapor. To be able to compare oxygen carriers with different fractions of support materials, a mass-based conversion, \(\omega\), was defined as follows [45]:

\[
\omega = \frac{m}{m_{\text{ox}}} = 1 + R_0(X - 1)
\]

where \(R_0\) is the oxygen ratio

\[
R_0 = \frac{m_{\text{ox}} - m_{\text{red}}}{m_{\text{ox}}}
\]

Figure 14 showed the OC conversion rate as a function of the mass-based conversion for Sample B and Sample E.

In addition to reactivity, other aspects like agglomeration and attrition should be considered to evaluate the behavior of the OCs during tests at high-temperature fluidization. Figure 15 showed the particle size distribution (PSD) of both fresh and extracted particles from the reactors at the end of the cyclic tests. Sample B particles exhibited inconspicuous fragmentation and agglomeration, whereas sample E particles performed a little obvious agglomeration and attrition in spite of the high operating temperature, and defluidization of the reactors was never detected for two OCs.

In the continuous fluidization operation for CLC/CLOU, Cu-based OCs are always subjected to attrition trouble [46]. It has long been known that for fluidized bed combustion, particles from the fuel (coal, char, ash, etc.) or the SO₂ sorbent (limestone, dolomite, etc.) are also attrited by the mechanical forces in the bed, while chemical reactions are taking place [47]. To some extent, the mechanical damage and chemical corrosion of OC particles can be alleviated by designing proper inner structure as well as choosing suitable material component. In light of this, a hierarchical structure is consisted with a whole porous Al₂O₃ core, an interconnected TiO₂ nanoparticle layer, and a Cu-based active component coat, which exhibits better mechanical strength and support inertness in comparison to conventionally synthesized samples of the same composition.

Fig. 13. TCD profiles of TPR (10% H₂ + Ar) and TPO (3% O₂ + He) tests for sample A and sample B in the chemisorption analyzer.

Fig. 14. Reactivity of OCs with methane as the fuel at 950°C. Gas conversion rate as a function of the mass-based conversion for Sample B and Sample E.
In order to validate the effect of SATCS, sample B as the optimal one was compared with other Al$_2$O$_3$- or TiO$_2$-supported Cu-based OCs prepared by different methods available in some published literatures. Remarkably, sample B could be decomposed at an oxygen release rate up to 0.37 kg O$_2$/(kg OC min) at 900 °C, about 11 and 18 times higher than these of CuO/Al$_2$O$_3$ sample (80 wt% CuO loading at a 0.032 kg O$_2$/(kg OC min) rate at 950 °C) [48] and CuO/TiO$_2$ sample (50 wt% CuO loading at a 0.02 kg O$_2$/(kg OC min) rate at 900 °C) [49], respectively. For CLC in a fluidized-bed reactor, an estimate of the mass of OC needed in reactor, m_{bed}, can be calculated as [50]:

$$m_{\text{bed}} = \frac{\Delta m}{\Delta t}$$ \hspace{1cm} (14)

where Δm is the stoichiometric mass flow of oxygen needed for complete conversion of the methane to carbon dioxide and water. Thereby, the amount of OC necessary can be calculated, in which 41.9 kg/MWth of sample B was much lower than 78 kg/MWth of a representative CuO/Al$_2$O$_3$ sample in reference [9]. Moreover, the oxygen carrier recirculation rate between the air and fuel reactors is [50]

$$m_{\text{sol}} = \frac{\omega_{\text{air}} \Delta m}{\Delta \omega}$$ \hspace{1cm} (15)

where ω_{air} is the conversion in the air reactor. Thus, for a $\Delta \omega$ of 0.03 the needed recirculation rates of sample B and the CuO/Al$_2$O$_3$ sample [9] would be 1.1 kg/(MWth s) and 2.6 kg/(MWth s), respectively. These results indicated that the reactivity of sample B was superior to that of these OCs prepared by conventional methods. Because there were many notable differences between these references and this work in experimental conditions (especially conditions such as temperature, atmosphere, and particle size, which all have a significant impact on reactivity), a comprehensive comparative investigation for some well-known preparation methods at the same experimental condition could be schematized in the near future. However, one point was affirmative that the conventional methods, such as mechanical mixing or freeze-granulation, fail to construct an effective microstructure maintaining higher dispersion level and facilitating active oxygen transmission. The analysis of physicochemical characterizations could confirm the inner organization form of the novel OC as well as provide a clear understanding for the SATCS method.

4.3. Physicochemical characterizations of the OCs

As shown in Fig. 16, the chemical compositions of Sample A and Sample B in three different states were analyzed using XRD. For sample A without nm-TiO$_2$, CuAl$_2$O$_4$ spinel was formed at high temperatures during synthesis as the reaction:

$$\text{CuO} + \text{Al}_2\text{O}_3 \rightarrow \text{CuAl}_2\text{O}_4$$ \hspace{1cm} (R2)
The phase field in the Cu-Al-O system is dependent on the oxygen partial pressure during redox cycles in the temperature range of relevance [16]. CuAl₂O₄ could slowly release gaseous O₂ as a possible reaction (R1), so only a few CuAl₂O₄ would release oxygen for a limited time in CLOU process. As for Sample B, all of the copper was presented in the form of active phase CuO/Cu₂O to quickly achieve complete redox, whereas TiO₂ and Al₂O₃ as support phases always maintained a stable chemical property.

As shown in Fig. 17, the crushing strength of four used samples was reduced, and the standard deviation of the measurement also decreased. However, Sample B had the highest strength and kept a higher mechanical stability that was good for attrition resistance and sintering resistance. A recent investigation has shown that OCs with a crushing strength above 1 N have generally shown better performance with respect to attrition in continuous operation, and with a crushing strength above 2 N are more likely to resist attrition than soft particles [45].

The attrition rate (by the standard abrasion tester), specific surface area (SSA) and specific pore volume (SPV) were measured and shown in Table 3. Attrition rate is a useful measure to estimate the lifetime of OC particles [14]. The attrition test was consistent with the crushing strength test, indicating that Sample B particles are really higher in mechanical durability. A higher specific surface area and specific pore volume of Sample B is an immediate cause of good reactivity. The fact that Sample B maintained high surface area and pore volume after 15 redox cycles further proved that Sample B had excellent resistance to sintering.

From above experimental results, we found that the addition of nm-TiO₂ has greatly improved the physicochemical performances of the Cu-based OC, and Sample B is the best from the point of view of CLOU behavior and material cost. Sample B was then selected for

Table 3
Properties of the OC particles, fresh and after 15 redox cycles.

<table>
<thead>
<tr>
<th></th>
<th>Sample A</th>
<th>Sample B</th>
<th>Sample C</th>
<th>Sample D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh</td>
<td>8.04</td>
<td>6.12</td>
<td>6.36</td>
<td>13.44</td>
</tr>
<tr>
<td>SSA (m²/g)</td>
<td>0.93</td>
<td>0.41</td>
<td>1.64</td>
<td>1.12</td>
</tr>
<tr>
<td>SPV (cm³/g)</td>
<td>0.013</td>
<td>0.028</td>
<td>0.021</td>
<td>0.017</td>
</tr>
<tr>
<td>15 Redox</td>
<td>–</td>
<td>–</td>
<td>1.25</td>
<td>0.76</td>
</tr>
<tr>
<td>SSA (m²/g)</td>
<td>0.41</td>
<td>0.008</td>
<td>0.76</td>
<td>0.13</td>
</tr>
<tr>
<td>SPV (cm³/g)</td>
<td>0.008</td>
<td>0.021</td>
<td>0.013</td>
<td>0.006</td>
</tr>
<tr>
<td>15 Redox</td>
<td>–</td>
<td>–</td>
<td>0.02</td>
<td>0.006</td>
</tr>
</tbody>
</table>

Fig. 17. Crushing strength of fresh and used Cu-based OCs. The vertical bars represent standard deviation of 30 repeated measurements for each sample.

Fig. 18. FSEM-EDS images of fresh (a, c) and reused (b, d) OC particles (Sample B, CuO(77.5 wt%)@TiO₂(5 wt%)-Al₂O₃(17.5 wt%)). BSE and EDS profiles of cross section particles (a, b), and SE images of the Al₂O₃–TiO₂ skeleton (c, d).
further investigation and analysis. Figure 18a and b via FSEM-EDS showed that in Sample B the components and elements were distributed uniformly before and after the 15-redox test, and the active component CuO was enriched on the surface layer of particles. It should be noted that Cu(NO₃)₂ solution could impregnate into μm-Al₂O₃ particles with porous structure, and nm-TiO₂ could migrate through these micro pores due to drag forces induced by the receding liquid surface and capillary forces [51] during precursor drying. And nm-TiO₂ thereby adsorbed on the inner surface of μm-Al₂O₃ to inhibit CuAl₂O₄ generation. As results, FSEM-EDS images show that Cu and Ti elements are distributed over the whole particle. The high magnification images showed the fresh and reused OC particles both maintained a rich and quite uniform porous structure. Once the active component CuO has been dissolved by the ammonia–ammonium carbonate solution, the core–shell structured Al₂O₃–TiO₂ supports formed a spongiform framework with rich interconnected mesopores (as shown in Fig. 18c and d via SE). The active component was filled in the mesopores and separated fine grains, so the contact between grain and grain, grain and Al₂O₃ was prevented. This special structure ensures that the oxygen carriers demonstrate higher reactivity, satisfactory mechanical properties and sintering resistance.

4.4. Environmental and economic evaluation

Synthetic Cu-based OCs often used copper nitrate as the main raw material, and there is no doubt that the NOₓ emissions problem needs to be reconsidered. NOₓ is a serious air pollutant, and its generation and emissions must be strictly limited. The TG-DTA-FTIR investigation for dried precursors of Sample B (as a representative of SATCS method) and Sample E (sol–gel method) was conducted to analyze and compare the precursor transformation and gas pollutant emissions in OC synthesis. For the Sample B precursor, the TG-DTA curves (Fig. 19a) indicated that the decomposition follows the loss of (1) hydrate water at approximately 100–200 °C (endothermic), (2) urea and nitrate combustion (exothermic, ignited at 212 °C). The fact that a very small amount of NOₓ was detected by FTIR at approximately 210 °C and then the concentration rapidly declined to near-zero levels, as shown in Fig. 20 (green dashed line), demonstrated that there was a little decomposition of copper nitrate and urea (reactions R3 and R4) before the ignition, and then the stable combustion no longer released NO₂ (reactions R5 and R6). Obviously, the SATCS method can significantly reduce or even eliminate NOₓ emissions during OC synthesis processes, thereby providing an environment-friendly synthesis route. It is noted here ammonia (NH₃) was widely used in selective non-catalytic reduction (SNCR) to reduce NOₓ to nitrogen and water (R5). The sharp exothermic peak (2) at 268.3 °C of the DTA curve was characterized as the typical combustion synthesis. For per kilogram of OC (Sample B) produced, combustion releases heat at approximately 1.5 kW h (estimated according to the standard molar enthalpy change DHₘ = −1675.5 kJ mol⁻¹ for reaction R6). The instantaneous heat release and high flame temperature¹ (approximately 2000 °C [28,52]) benefited to exempt the calcination stage and heating equipment, shorten the production cycle and save energy consumption.

2Cu(NO₃)₂ → 2CuO + 4NO₂ + O₂ \hspace{1cm} (R3)

¹ Note: for Sample B in the TG-DTA, as shown in Fig. 20, a little NOₓ release owing to incomplete reaction with NH₃ at low temperature before burning is observed. Actually, pre-ignition can prevent the NO₂ release.

CO(NH₂)₂ + H₂O → 2NH₃ + CO₂ \hspace{1cm} (R4)

6NO₂ + 8NH₃ → 7N₂ + 12H₂O \hspace{1cm} (R5)

² Note: for Sample B, in the TG-DTA, as shown in Fig. 20, a little NO₂ release owing to incomplete reaction with NH₃ at low temperature before burning is observed. Actually, pre-ignition can prevent the NO₂ release.
Raw material costs of fresh OCs.

<table>
<thead>
<tr>
<th>Unit price ($/kg)</th>
<th>Sample B (SATCS)</th>
<th>Sample E (sol–gel)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Amount (kg/kg O<sub>2</sub>)</td>
<td>Cost ($/kg O<sub>2</sub>)</td>
</tr>
<tr>
<td>μm-Al<sub>2</sub>O<sub>3</sub></td>
<td>0.5<sup>a</sup></td>
<td>2.30</td>
</tr>
<tr>
<td>nm-TiO<sub>2</sub></td>
<td>20<sup>b</sup></td>
<td>0.66</td>
</tr>
<tr>
<td>CO[NH<sub>2</sub>]</td>
<td>0.2<sup>c</sup></td>
<td>12.83</td>
</tr>
<tr>
<td>Cu(NO<sub>3</sub>)</td>
<td>3H<sub>2</sub>O</td>
<td>4.6<sup>d</sup></td>
</tr>
<tr>
<td>Al(C2H5)3</td>
<td>3.7<sup>e</sup></td>
<td>–</td>
</tr>
<tr>
<td>OC product</td>
<td>–</td>
<td>13.16</td>
</tr>
</tbody>
</table>

3Cu(NO₃)₂ + 5CO(NH₂)₂ → 3CuO + 5CO₂ + 10H₂O + 8N₂ (R6)

For Sample E in Fig. 19b, the removal of capillary water (well (1)) and hydrate water (well (2)), and the decomposition of copper nitrate (well (3)) need large amounts of heat consumption, and even worse, generate large amounts of released NO₂ as much as 18.3 mol/kg OC (Fig. 19b pink solid line) and would cause serious air pollution if no effective treatment. In addition, a weak exothermic peak (Fig. 19b peak (4)) started from approximately 800 °C until the end of the calcination, owing to the formation of copper aluminate (reaction R2). This is a drawback in conventional synthesis methods for Cu-based OCs, whereas the phenomenon does not happen in SATCS.

Furthermore, the impact of the nm-TiO₂ additive on the manufacturing cost of fresh OC is worth considering. In Table 4, the unit prices of raw materials sourced from the industry information website about manufacturers, suppliers and products (www.made-in-china.com) in August 2014, and the costs of OCs for per kilogram gaseous oxygen capacity were estimated. The price adopted here approaches to the median over the past 7 years for per kilogram gaseous oxygen capacity were estimated. The cost of Sample B was far lower than the cost of Sample E, and a cost advantage for the SATCS method compared with the sol–gel method was indicated. The cost of nm-TiO₂ was only approximately 8% of the total raw materials cost, which did not affect total costs so dramatically. If the environmental cost and energy consumption were considered, the superiority of the SATCS method was particularly prominent, and the costs could be cut further in mass production.

5. Conclusions

This study aimed to prepare Cu-based OCs with a high loading and high degree of dispersion of active CuO in the inexpensive and durable support. A novel Cu-based oxygen carrier (CuO@TiO₂–Al₂O₃) with high performance was reported based on an interesting synthetic route (SATCS), involving nanomaterial, colloid chemistry and environmental protection. The tailor-made CuO@TiO₂–Al₂O₃ OC particles demonstrated satisfactory performances as desired in the CL processes. It is possible to synthesize functional OCs for the CL processes by tuning the precursor chemistry and fabricating the microstructures within particles.

First, a basic understanding of the interaction between CuO and support was obtained via DFT calculations, which involved the reactivity and sintering resistance of Cu-based OCs and was helpful in selecting the proper materials (i.e., TiO₂ and Al₂O₃). Then, the influence of support size and content on OC stability was analyzed based on the concept of the Zener pinning force of sintering limit, which suggested that adding nanolevel particles favored sintering resistance. Subsequently, colloid chemistry analysis and calculations were used for designing an expected orderly microstructure, in which active component CuO was supported by core–shell structured Al₂O₃–TiO₂ composite (a core(Al₂O₃)–shell(TiO₂) hierarchical structure customized from the self-assembly of flame-synthesized TiO₂ nanoparticles and commercial Al₂O₃ microparticles). Finally, OCs were efficiently manufactured with a short production period, low energy consumption and low pollution using the combustion synthesis technique.

The novel CuO@TiO₂–Al₂O₃ OCs with different Al₂O₃ and TiO₂ contents were examined in both a thermogravimetric analyzer and a fluidized bed reactor to investigate the oxygen transport capacity, reactivity, and cyclic oxygen release and uptake. A representative Cu-based OC based on a support composite of Al₂O₃ (17.5 wt%–TiO₂ (5 wt%) exhibited excellent performance of repeated oxygen release/uptake, stable mechanical strength, and high reactivity. The microstructure and phase analysis using FSEM–EDS and XRD showed that the Al₂O₃ surface was coated with TiO₂ nanoparticles, resulting in a spongy but firm inert framework. The CuO was uniformly dispersed and highly loaded in the sponge framework. The addition of TiO₂ nanoparticles can prevent the interaction between CuO and Al₂O₃ almost completely and can inhibit CuO grain sintering effectively, so OCs with a high CuO content can withstand a higher temperature (such as 1000 °C) without sintering and agglomeration.

Thus, CuO@TiO₂–Al₂O₃ is an attractive oxygen carrier for CL processes, and the SATCS method is highly suitable for large-scale preparation of OC particles. The high performance OC could be applied in CLC, CLOU, CLAS, and Ca–Cu looping for clean energy production and CO₂ capture.

Acknowledgments

This work was funded by the National Natural Science Foundation of China (Grant Nos. 51276077 and 51390494). The authors are grateful to the Analytical and Testing Center of HUST for XRD, SEM, EDS, and TEM measurements.

References

