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The Monte Carlo (MC) method for population balance modeling (PBM) has become
increasingly popular because the discrete and stochastic nature of the MC method is
especially suited for particle dynamics. However, for the two-particle events (typically,
particle coagulation), the double looping over all simulation particles is required in normal
MC methods, and the computational cost is O(Ns

2
), where Ns is the simulation particle

number. This paper proposes a fast random simulation scheme based on the differentially-
weighted Monte Carlo (DWMC) method. The majorant of coagulation kernel was
introduced to estimate the maximum coagulation rate by a single looping over all
particles rather than the double looping. The acceptance–rejection process then pro-
ceeded to select successful coagulation particle pairs randomly, and meanwhile the
waiting time (time-step) for a coagulation event was estimated by summing the
coagulation kernels of rejected and accepted particle pairs. In such a way, the double
looping is avoided and computational efficiency is greatly improved as expected. Five
coagulation cases for which analytical solutions or benchmark solutions exist were
simulated by the fast and normal DWMC, respectively. It is found the CPU time required
is orders of magnitude lower and only increases linearly with Ns; at the same time the
computational accuracy is guaranteed very favorably.

& 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Coagulation between particles (or bubbles, droplets) is ubiquitous in many different fields of nature and engineering
(Friedlander, 2000), including atmospheric physics (aerosol dynamics), combustion (the growth of particulate matter, soot and
PAH), chemical engineering (e.g., polymerization, granulation, crystallization, and precipitation), catalytic chemical processes, food
processes, nanoparticle synthesis, and so on. The particle coagulation refers to two particles collide and adhere together, leading to
the increase of average particle size and the decrease of particle number concentration, i.e., the dynamic evolution of particle size
distribution (PSD). Among the various particle dynamic events, coagulation is the most demanding event for modeling, as it always
involves two discrete particles. The population balance equitation (PBE) for particle coagulation, which characterizes coagulation
dynamics in term of the time evolution of PSD, is represented by the following mathematical equation:

∂nðv; tÞ
∂t

¼ 1
2

Z v

vmin

βðv�u;u; tÞnðv�u; tÞnðu; tÞdu�nðv; tÞ
Z vmax

vmin

βðv;u; tÞnðu; tÞdu: ð1Þ
208; fax: þ86 27 87545526.
o).

www.sciencedirect.com/science/journal/00218502
www.elsevier.com/locate/jaerosci
http://dx.doi.org/10.1016/j.jaerosci.2014.03.006
http://dx.doi.org/10.1016/j.jaerosci.2014.03.006
http://dx.doi.org/10.1016/j.jaerosci.2014.03.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jaerosci.2014.03.006&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jaerosci.2014.03.006&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jaerosci.2014.03.006&domain=pdf
mailto:klinsmannzhb@163.com
http://dx.doi.org/10.1016/j.jaerosci.2014.03.006


Z. Xu et al. / Journal of Aerosol Science 74 (2014) 11–2512
where n(v, t) with dimension m�3 m�3 is the particle size distribution function (PSDF) at time t, so that n(v, t)dv is the number
concentration of particles with size range between v and vþdv at time t; β(v, u, t) is the coagulation kernel for two particles of
volumes v and u at time t, m3 s�1.

Because of the partial integro-differential nature of the PBE, it is difficult to solve it directly. Only for a few ideal cases can
we get analytic solutions, otherwise we can only get approximate solutions by numerical methods. The deterministic
scheme such as sectional method and method of moments (Frenklach & Harris, 1987; Gelbard et al., 1980) is capable of
solving Eq. (1) either through an appropriate discretization scheme or by quadrature. However, there exist some difficulties
such as complicated mathematical models (especially for multivariate population balance) and discrete errors for the
deterministic methods. The stochastic (Monte Carlo) scheme, which describes directly the dynamic evolution of particle
population in dispersed systems, approximates the PBE solution through a large amount of random sampling from the
system. The discrete nature of the MC method adapts itself naturally to the discrete process (i.e., the discrete particle
population and the discrete dynamic events). The population balance-Monte Carlo (PBMC) can obtain the details of the
dynamic evolution of multi-dimensional, multi-component, and polydispersed particle population (Zhao & Zheng, 2011,
2013; Zhao et al., 2011). Furthermore, the MC algorithm is comparatively easy to program. Owing to these advantages, MC
constitutes an important class of methods for the numerical solution of the population balance modeling (PBM).

Generally speaking, MC methods can be classified either by time discretization scheme into event-driven MC and time-
driven MC, or by simulation particle weighting scheme into equally-weighted MC and differentially-weighted MC. Event-
driven MC (Garcia et al., 1987) first calculates time interval (or waiting time) ΔtED between two successive events based on
the average rate of event processes and then uses the stochastic game to choose the event that happens after this waiting
time. Time-driven MC (Liffman, 1992) considers all possible events that may happenwithin a pre-specified time step ΔtTD to
be decoupled; ΔtTD is constrained to be less than or equal to the minimum time scale within which each simulation particle
participates in one coagulation event at most. Most of the MC methods (Garcia et al., 1987; Liffman, 1992; Lin et al., 2002;
Maisels et al., 2004) belong to the equally-weighted method, in which all simulation particles have the same weight. Usually
a subsystem of the total system is simulated either explicitly or implicitly, in which the common weight is equal to the ratio
of the volume of the total system to that of the subsystem. However, the equally weighting scheme leads to a great deal of
statistical noise for particles in those less-populated sections such as at the edges of log-normal distributed size spectrum. In
the differentially weighting scheme, these sections where the number density is low can be represented by simulation
particles with appropriate number and relatively small weight. Keeping track of differentially weighted simulation particles
of different sizes will thus help to improve the accuracy of MC. We have proposed the differentially-weighted Monte Carlo
(DWMC) method for particle coagulation for univariate population balance (Zhao et al., 2005a, 2005b) and multivariate
population balance (e.g., two-component aggregation) (Zhao et al., 2010, 2011). The key ideas are to establish the
coagulation rules that describe how to deal with coagulation between differentially-weighted simulation particles, and to
specify how the simulation particles should be homogeneously distributed over the size spectrum (rather than to let them
evolve freely). The DWMC can evolve in either event-driven mode (Zhao & Zheng, 2009b) or time-driven mode (Zhao et al.,
2010), and keeps the total number of simulation particles constant in simulation. It was validated that the DWMC methods
perform better statistical accuracy than other equally-weighted MC.

It is worth emphasizing that an optimal combination of high accuracy and high efficiency are essential for PBMC, because
with the increase in simulation particle number its numerical accuracy increases while its computational efficiency
decreases. For the two-particle events such as coagulation (or aggregation, agglomeration), the normal PBMC simulation has
to calculate/update the interaction probability of any particle pair each time step to obtain probability distribution of
random events and the waiting time between two successive events. The double looping over all simulation particles is thus
required in the normal PBMC methods, so the computational cost reaches O(Ns

2
), where Ns is the simulation particle number.

Although there is dramatic increase in computational power over the past decade, it is still very necessary to improve the
computational efficiency for fast prediction of particle dynamics. There are two kinds of ways to accelerate MC simulation:
one is parallel computing (Kruis et al., 2010), including CPU parallel computing based on Message Passing Interface (MPI)
and Open Multi-Processing (OpenMP), and Graphitic Processing Unit (GPU) parallel computing based on Open Computing
Language (OpenCL) and Compute Unified Device Architecture (CUDA) (Wei & Kruis, 2013). Factually the parallel computing
of MC simulation uses more computer source simultaneously to reduce computational time. Another is to improve the
scheme of PBMC itself to accelerate simulation. Kruis et al. (2000) proposed the smart bookkeeping technology to avoid a
large number of re-calculations of the coagulation rates of particles not participating in coagulation, in such a way that the
CPU time is greatly saved without loss in accuracy. Wagner et al. (Eibeck & Wagner, 2000, 2001) and Kraft et al. (Goodson &
Kraft, 2002) developed a new efficient MC which utilized the majorant of coagulation kernel to calculate the coagulation
probability of all particle pairs by a single looping over all particles rather than the double looping. A Markov model with
fictitious jumps was then constructed to simulate particle dynamics with high accuracy. The CPU time increases linearly
with Ns, rather than as Ns

2
(as with the conventional MC). Recently, Wei (2013) proposed a fast acceptance–rejection scheme

that can boost the performance of Monte Carlo methods for particle coagulation by establishing a connection between the
information of particle pairs and the maximum coagulation rate. Lécot and Tarhini (2008) and Lécot and Wagner (2004)
proposed the quasi-Monte Carlo to accelerate the convergence rate, in which pseudo-random numbers were replaced by
quasi-random numbers or low-discrepancy point sets (which are “evenly distributed”). Similar idea in terms of good lattice
point set was also used by Kruis et al. (2012) to estimate the maximum of coagulation kernel with a remarkable gain in
efficiency. Another measure accelerating PBMC simulation is to simulate coagulation between particle species rather than
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between discrete simulation particles (as with the conventional MC). In the species-based MC, the particles with size in a
specified interval are viewed as pseudochemical species, and the stochastic simulation algorithm for chemical kinetics is
adopted to define the state of a coagulating system in terms of “coagulation/aggregate species” (Gillespie, 1976). The
species-based algorithm had a variety of different implementations by different researchers such as Laurenzi and Diamond
(1999), Irizarry (2008a, 2008b), Kraft et al. (Shekar et al., 2012a, 2012b), Debry et al. (2003), DeVille et al. (2011), and Riemer
et al. (2009). The species-based MC methods exhibit an excellent improvement in efficiency and memory demand because
the number of particle species is usually far less than that of discrete simulation particles. However, their computational
accuracy is generally lower than the conventional particle-based MC. Furthermore the species-based MC methods are
usually at the cost of complicated algorithms and are less sensitive to the innate fluctuations for coagulation processes
which are also stochastic in nature.

To sum up, the above-mentioned measures can improve computational efficiency of PBMC simulation more or less,
however, at the cost of either obvious losing in accuracy, or increasing in complexity of PBMC algorithms. This paper aims to
improve the simulation scheme of the DWMC method (Zhao et al., 2009, 2010; Zhao & Zheng, 2009b) and then proposes a
fast DWMC method, which is expected that the single looping over all simulation particles is just required to simulate
particle coagulation dynamics within one time-step. In order to examine the performance of the fast-DWMC method, five
special coagulation cases for which analytical solutions (for constant coagulation kernel and linear coagulation kernel) or
benchmark solutions (for Brownian coagulation kernels in the free molecular regime and continuum regime) exist are
simulated by the fast DWMC and the normal DWMC respectively. Their accuracy and cost are compared and analyzed.

2. Theory and method

2.1. Normal differentially-weighted MC

The concept of weighting simulation particles is widely utilized by MC to overcome the conflict between large numbers
of real particles and limited CPU speed and memory capacity. The weight of a simulation particle i, wi, means the simulation
particle i represents wi real particles having the same or similar internal variables (i.e., size, component) as i. Note that the
size distribution is usually polydisperse in real cases and particle dynamics such as coagulation leads to the dynamic
evolution of size distribution. The differentially weighting scheme is especially suited for the inhomogeneous and time-
varying characteristics of particle size distribution function.

The key issue of the differentially-weighted MC is to design a rule for coagulation event between two differentially-
weighted simulation particles. We introduced probability theory to consider coagulation in pairs. Under the probabilistic
coagulation rule, for a coagulation event between simulation particles i and j (their weights wi and wj are unequal); it is
imagined that each real particle from i undergoes a real coagulation event with a probability of min (wi, wj)/wi, and each real
particle from j does so with a probability of min (wi, wj)/wj. Thus, on average, only min(wi, wj) real particles from i or j
participate in real coagulation. As a result, two new simulation particles, which represent “coagulated” real particles and
“non-coagulated” real particles respectively, are produced to replace the old simulation particles i and j. We formulated the
result of a coagulation event as follows:

wn

i ¼ maxðwi;wjÞ� minðwi;wjÞ; mn

i ¼mk

��
wk ¼ maxðwi ;wjÞ; vni ¼ vk

��
wk ¼ maxðwi ;wjÞ;

wn

j ¼ minðwi;wjÞ; mn

j ¼miþmj; vnj ¼ viþvj; ð2Þ

where the asterisk indicates a new value of weight or state after the coagulation event; mi and vi are the total mass and
volume of simulation particle i respectively; the particle diameter (d) can be obtained from particle volume, assuming the
aggregates attain rapidly a spherical shape due to fast coalescence or sintering. It is obvious that Eq. (2) satisfies the laws of
conservation of mass, and also keeps the number of simulation particles constant.

As far as the probabilistic coagulation rule is concerned, the total coagulation rate of simulation particle i (C0
i with

dimension of m�3 s�1), which is the accumulative total of the coagulation rate between i and any one of the other
simulation particles, is calculated as (Zhao et al., 2009)

C0
i ¼

1

V2 ∑
Ns

j ¼ 1;ia j

2βijwj maxðwi;wjÞ
wiþwj

� �
¼ 1

V2 ∑
Ns

j ¼ 1;ja i
β0ij; with β0ij ¼ βijwj

2 maxðwi;wjÞ
wiþwj

: ð3Þ

where βij is the coagulation kernel between particle i and particle j, m3 s�1; β0ij is a normalized kernel that relates not only to
the states (e.g., masses) but also to the weights of the two simulation particles; and V is the volume of computational
domain. Furthermore, the rate of coagulation event occurring among two simulation particles per unit volume is calculated
as (Zhao & Zheng, 2009b)

R0
coag ¼

1
2

∑
Ns

i ¼ 1
C0
i ¼

1

2V2 ∑
Ns

i ¼ 1
∑
Ns

j ¼ 1;a i
β0ij: ð4Þ

Based on the total coagulation rate of each simulation particle, a Markov model for particle coagulation is then
constructed. The DWMC method can evolve either in event-driven mode or in time-driven mode. In the event-driven mode,
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the time step is specified as the waiting time between two successive events, which is inversely proportional to coagulation
rate R0

coag:

ΔtED;k ¼
1

VR0
coag;k

¼ 2V
∑Ns

i ¼ 1∑
Ns
j ¼ 1;a iβ

0
ij

: ð5Þ

where ΔtED,k is the time-step after (k�1)-th coagulation event. In such a way, only one coagulation event occurs within ΔtED,
k for the event-driven DWMC. While in the time-driven DWMC, many coagulation events may occur within a time step;
however a simulation particle only participates in one coagulation event at most. We define the ratio (p) of the number of
coagulated simulation particles to the whole simulation particle number within ΔtTD,k, 2/Nsrpr1. The time-step in the
time-driven DWMC is thus calculated as (Zhao et al., 2010)

ΔtTD;k ¼ pNs= ∑
Ns

i ¼ 1
ðVC 0

i;kÞ ¼ pNsV= ∑
Ns

i ¼ 1
∑
Ns

j ¼ 1;a i
β0ij: ð6Þ

The parameter p in the time-driven DWMC is recommended to have value of 0.01–0.05.
Within a prescribed time step the interacting particle pair(s) is (are) selected with probability β0ij=∑i∑j;ja iβ

0
ij. Either the

cumulative probabilities method or the acceptance–rejection method can be adopted to determine the coagulated pair(s) in
either event-driven mode or time-driven mode. In this paper the acceptance–rejection (AR) method is highlighted because
it may improve computational efficiency in some cases (e.g., with narrow size spectrum) or for some PBMC methods (e.g.,
the fast DWMC presented here). In the acceptance–rejection method, two randomly-selected simulation particles i and j
undergo a coagulation event if the following condition is met:

rrβ0ij=β
0
max: ð7Þ

where r is a random number from an uniform distribution in the interval [0, 1], β0max is the maximum of the normalized
coagulation kernel over all possible pairs. This procedure is repeated until a particle pair is accepted. It is worth noting that,
even though β0max is overestimated, the acceptance–rejection method can still implement the Markov process exactly but
less efficiently.

Noting that the normal DWMC methods need double looping over all simulation particles to obtain the coagulation rate
of a simulation particle, the waiting time and the maximum coagulation kernel, even though the smart bookkeeping
technology (which is actually required a regional double looping) is used. This is why the computational cost is as high as
O(Ns

2
). In this paper we proposed a fast DWMC method to avoid the double looping.
2.2. Fast differentially-weighted MC

2.2.1. Majorant kernel
Wagner et al. (Eibeck & Wagner, 2000, 2001) and Kraft et al. (Goodson & Kraft, 2002) have developed an efficient MC

method for particle coagulation in population balance, where the majorant of coagulation kernel was introduced to calculate
the coagulation probability of all particle pairs by single looping over all particles rather than double looping. Based on the
majorant kernel β̂ij rather than the normal kernel βij, a Markov model with fictitious jumps was then constructed to simulate
particle dynamics. The majornant kernel β̂ij has the following characteristics: (1) β̂ijZβij for all i, j; (2) β̂ij can be formulated
by β̂ij ¼∑k½hkðiÞ � gkðjÞ� so that only single looping over all simulation particles is enough to calculate the coagulation rate;
(3) βij=β̂ij is close to 1 as possible so that the fictitious jumps are rare. Some normal coagulation kernels and their
corresponding majorant kernels which are usually faced in population balance are listed in Table 1.

It is worth noting that, although the computational cost of the efficient MCs is O(Ns), the inevitable fictitious jumps will
decelerate the MC simulation a certain extent. Different from utilizing the majorant kernel to calculate the coagulation rate
with high efficiency, in the fast DWMC we utilize the characteristics of the majorant kernel to estimate the maximum value
of all normalized coagulation kernels through only single looping. As known, the majorant kernel of normal coagulation
kernel is usually β̂ij ¼∑k½hkðiÞ � gkðjÞ�, then βmaxr β̂maxr∑k½maxðhkðiÞÞ � maxðgkðjÞÞ�, where βmax and β̂max are the
maximum values of normal coagulation kernel and majorant kernel respectively. Once we obtain max(hk(i)) and max
(gk(j)) through single looping over all simulation particles, we can estimate βmax and use it in the acceptance–rejection
process to choose coagulation pairs at random.

However, in the DWMC we should estimate the maximum of normalized coagulation kernel (rather than the maximum
of normal coagulation kernel). We take Brownian coagulation kernel in the free molecular regime as an example to show
how to construct the corresponding weighted majorant kernel and then to estimate the maximum value of β0. Firstly, by
setting a¼vi/vj the majorant kernel can be transformed to

β̂ij ¼
ffiffiffi
2

p
K fmv

1=6
j ða2=3þa1=6þ1þa�1=2Þ: ð8Þ



Table 1
Some normal coagulation kernels, normal majorant kernels and weighted majorant kernels.a

Case Formulation

Constant coagulation
Normal kernel βij ¼ A
Majorant kernel β̂ij ¼ A
Weighted majorant kernel β̂

0
ij ¼ 2Awj

Linear coagulation
Normal kernel βij ¼ AðviþvjÞ
Majorant kernel β̂ij ¼ AðviþvjÞ
Weighted majorant kernel β̂

0
ij ¼ 2Awjvj 1þvmax

vj

� 	
Brownian coagulation in the free molecular regime

Normal kernel βij ¼ K fmðv1=3i þv1=3j Þ2ðv�1
i þv�1

j Þ1=2
Majorant kernel β̂ij ¼

ffiffiffi
2

p
K fmðv1=6i þv1=6j þv2=3i v�1=2

j þv2=3j v�1=2
i Þ

Weighted majorant kernel
β̂
0
ij ¼ 2

ffiffiffi
2

p
K fmv1=6j wj

vmax
vj

� 	2=3
þ vmax

vj

� 	1=6
þ1þ vmin

vj

� 	�1=2
� �

Brownian coagulation in the continuum regime
Normal kernel βij ¼ Kcoðv1=3i þv1=3j Þðv�1=3

i þv�1=3
j Þ

Majorant kernel
β̂ij ¼ Kco 2þ vi

vj

� 	1=3
þ vi

vj

� 	�1=3
� �

Weighted majorant kernel
β̂
0
ij ¼ 2Kcowj 2þ vmax

vj

� 	1=3
þ vmin

vj

� 	�1=3
� �

Brownian coagulation in the transition regime
Normal kernel

βij ¼ 1
βsfij
þ 1

βfmij

� ��1

Majorant kernel

β̂ij ¼ β̂
fm
ij ; ðR̂fmrRsf Þ
βsfij ; ðR̂

fm
4Rsf Þ

8><
>:

Weighted majorant kernel
β̂
0
ij ¼ 1

sf β̂
0
ij

þ 1
fm β̂

0
� ��1

a A is a constant number;K fm ¼ ð3=4πÞ1=6ð6kBT=ρpÞ1=2; Kco ¼ 2kBT=3μ; kB is Boltzmann's constant; T is the thermo-
dynamics temperature of the medium; ρp is the density of the particles; and μ is the viscosity of the medium. Brownian

coagulation kernel in the slip flow regime is βsfij ¼ Kcoðv1=3i þv1=3j Þ½ðCi=v
1=3
i ÞþðCj=v

1=3
j Þ�, sf β̂

0

ij ¼ 2KcowjCj½1þððCmax=CjÞþ
ðvmax=vjÞ1=3ÞþðCmax=CjÞðvj=vminÞ1=3Þ�, the slip correction factor Cj ¼ 1þ2:514λð6vj=πÞ�1=3, Cmax ¼ 1þ2:514λð6vmin=πÞ�1=3;

βfmij is the Brownian coagulation kernel in the continuum regime; λ is the mean free path of the medium, Rsf ¼ Σia j β
sf
ij ,

R̂
fm ¼ Σia j β̂

fm
ij (Kazakov & Frenklach, 1998; Patterson et al., 2006).
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With the correlation ðvmin=vjÞra¼ ðvi=vjÞr ðvmax=vjÞ (vmin and vmax are the minimum and maximum volumes of particles
respectively), we get

β̂ij ¼
ffiffiffi
2

p
K fmv

1=6
j ða2=3þa1=6þ1þa�1=2Þr

ffiffiffi
2

p
K fmv

1=6
j

vmax

vj

� �2=3

þ vmax

vj

� �1=6

þ1þ vmin

vj

� ��1=2
" #

: ð9Þ

Knowing ð2wj maxðwi;wjÞ=ðwiþwjÞÞr2wj, then

β0ij ¼ βij
2wj maxðwi;wjÞ

wiþwj

� �
r β̂ij

2wj maxðwi;wjÞ
wiþwj

� �
r2β̂ijwj: ð10Þ

So we can define the weighted majorant kernel as the following:

β̂
0
ij ¼ 2

ffiffiffi
2

p
K fmv

1=6
j wj 1þ vmax

vj

� �1=6

þ vmax

vj

� �2=3

þ vmin

vj

� ��1=2
" #

: ð11Þ

Now it is easy to obtain the maximum of weighted majorant kernel (β̂
0
max) only through the single looping. It is noted that

the weighted majorant kernel β̂
0
ij also has the following characteristics (like the normal majorant kernel): (1) β̂

0
ijZβ0ij for all i,

j; (2) β̂
0
ij is only related to internal variables of one simulation particle (rather than particle pair), i.e., β̂

0
ij ¼∑k½f kðjÞ�, so that

only single looping over all simulation particles is enough to estimate the maximum value over all β0ij; and (3) β0max=β̂
0
max is

close to 1 as possible so that the AR process choosing coagulation pair(s) is highly efficient. Table 1 summarizes these
weighted majorant kernels (only for the differentially-weighted MC) for some typical cases.
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2.2.2. Numerical realization of fast-DWMC
As described above, β̂

0
max approximates the maximum of β0ij. β̂

0
max is then used in the AR method to choose coagulation

pair(s). Before accepting a coagulation pair there may be many particle pairs that are rejected. The whole AR process
includes NAR particles pairs, which are chosen at random. We can thus view the AR process as a random sampling process
from particle population, and the average coagulation probability of all particle pairs involved in the AR process can
approximate the real average coagulation probability of all possible pairs. Based on this we can calculate the approximate
time step in the fast-DWMC as the following:

ΔtED;k ¼
2V

∑Ns
i ¼ 1∑

Ns
j ¼ 1;ja iβ

0
ij

¼ 2V
NsðNs�1Þβ0ij

� 2VNAR

NsðNs�1Þ∑NAR
q ¼ 1β

0
ij;q

: ð12Þ

ΔtTD;k ¼
pNsV

∑Ns
i ¼ 1Σ

Ns
j ¼ 1;ja iβ

0
ij

¼ pV

ðNs�1Þβ0ij
� pVNAR

ðNs�1ÞΣNAR
q ¼ 1β

0
ij;q

: ð13Þ

where β0ij;q is the normalized coagulation kernel for the q-th particle pair in the AR process. Then the fast DWMC simulation
runs as the normal DWMC to determine coagulation dynamics. The flowchart of the fast DWMC is shown in Fig. 1.

It must be emphasized that β̂
0
max, which overestimates the maximum of normalized coagulation kernel β0 to a certain

extent, has obvious influence on the performance of the fast DWMC method. On the one hand, if β̂
0
max is seriously
Fig. 1. The flowchart of fast-DWMC and normal-DWMC methods.
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overestimated (for example, 10,000 times of β0max), a large number of rejection events will occur and then lead to a
significant increase in computational cost. It is validated that these formulas of weighted majorant kernel shown in Table 1
can ensure β̂

0
max appropriately approximate β0max. Usually, β̂

0
max=β

0
maxo10 for Brownian coagulation cases shown in Section 3.

On the other hand, in order to approximate the waiting time as accurately as possible (as shown in Eqs. (12) and (13)), it is
required to have enough randomly-selected particle pairs in the AR process, which usually depends on β̂

0
max. In this paper it

is constrained that NARZ100 in the event-driven mode and NARZ1000 in the time-driven mode.

3. Numerical simulation and discussions

We simulated the simplest cases (constant kernel) initially with monodisperse and polydisperse distributions, a quite
simplified case (linear kernel) and two physically realistic cases (Brownian coagulation in the continuum regime and free
molecular regime) to examine the efficiency of the fast-DWMC and validate its accuracy comprehensively. It is easy to
calculate the maximum coagulation kernel once the maximum weight and particle size are obtained in the DWMC. No
special majorant kernel is required. However, it is necessary to validate the waiting time which is estimated in the fast-
DWMC by summing the coagulation kernels of rejected and accepted particle pairs. On the other side, for the linear kernel
case, the weighted kernel in the DWMC is related to both particle size and particle weight and can be described as
β0ij ¼ βijwjð2 maxðwi;wjÞ=ðwiþwjÞÞ. The particle with the maximum size as well as the maximum weight may not exist. So, if
we just obtain the maximum weight and the maximum size over all particles, the estimated maximum kernel may largely
exceed the actual maximum kernel β0max, resulting in inefficiency of the acceptance–rejection process.

Particle size distribution function (PSDF) and particle number concentration N (the zero-order moment of PSDF) are
gained. Cases 1–5 are described in Table 2, where v0 is the initial particle volume, N0 is the initial number concentration of
real particles, and τcoag is the characteristic coagulation time. In order to fatigue against statistical noise, MC simulation is
repeated three times.

3.1. Computational cost

Two typical PBMC methods (the constant-N method (Smith and Matsoukas, 1998) and the stepwise Constant-V method
(Kruis et al., 2000)), whose computational cost is proportional to O(Ns

2
) even with smart bookkeeping technique to update

the coagulation rate simultaneously, have been applied in many fields. In this paper, comparisons have been made between
the fast-DWMC and two typical PBMC methods to demonstrate its accuracy and efficiency. We further compared the
computational efficiency of the fast-DWMC and that of other two recent proposed highly efficient PBMC methods (the
majorant kernel method (Goodson & Kraft, 2002) and the fast MC method (Wei, 2013)). MC simulations run in a general
desktop PC equipped with CPU of Intel(R) Core(TM)2 Quad Q8300 @2.5 GHz and memory of 4 GB. As shown in Fig. 2, the
fast-DWMC attains significant efficiency improvement compared to the other two typical methods. As shown in Fig. 3
(Brownian coagulation in the free-molecular regime), it is not hard to find that the fast-DWMC method is more efficient
than PBMCs from both Kraft et al. and Wei et al. Factually, the fast-DWMC method accelerates population balance stochastic
modeling comprehensively, from the calculation of the maximum coagulation kernel, the estimation of the waiting time,
and the updating of particles information.

It is found from Fig. 2 that for the three typical MC methods the relation between CPU time (tCPU) and simulation particle
number Ns can be generally formulated by

tCPUCaNb
s ; ð14aÞ

tCPU;normal

tCPU;fast
CcNd

s ; ð14bÞ

tCPU;normal

tCPU;bookkeeping
Ce: ð14cÞ

where a, b, c, d, and e are constant numbers, which depend on simulation cases, MC methods and even computational
environment. These parameters are concluded in Table 3.
Table 2
Cases description.a

Case v0 N0 τcoag β(u, v)

1 1 1.0�1010 1/(N0A) A
2 1 1.0�1010 1/(N0A) A(uþv)
3 vg0¼0.029 μm3 106 cm�3 1561.3 s 6.405�10�10 cm3 s�1

4 1.414�10�26 m3 1.0�1017 1/(N0Kfmv0
1/6

) Kfm(u1/3þv1/3)2(u�1þv�1)1/2

5 6.545�10�20 m3 1.0�1022 1/(N0Kco) Kco(u1/3þv1/3)(u�1/3þv�1/3)

a A¼1.0�10�10 m3 s�1, K fm ¼ ð3=4πÞ1=6ð6kBT=ρpÞ1=2, Kco ¼ 2kBT=3μ, T¼300 K, kB¼1.38�10�23 J/K, ρ¼1000 kg/m3, μ¼1.832�10�5 Pa s.



Fig. 2. CPU time vs simulation particle number for (a) Case 1; (b) Case 2; (c) Case 4; and (d) Case 5.

Fig. 3. CPU time vs simulation particle number for three fast methods (Brownian kernel in the free molecular regime).
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It is obvious that the computational cost of normal MC methods (including the constant number method, the stepwise
constant-volume method with smart bookkeeping technology and other MCs) is as high as O(Ns

2
), while the cost of the fast-

DWMC is only O(Ns). The larger the number of simulation particles, the larger the speed-up ratio. For example, with respect
to Brownian coagulation in the continuum regime, when Ns¼10,000 the fast-DWMC can achieve 9000 times speed-up ratio
compared to the constant-number method.



Table 3
Relationship between tCPU and Ns.

MC methods a b c d e

Constant number method 10�6–10�4 E2 0.1–1 E1 30–40
Smart bookkeeping technology 10�7–10�5 E2
Fast-DWMC 10�5–10�4 E1
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3.2. Computational accuracy

To compare the relative performance and quantify numerical errors, we compare the different MC methods on a
quantitative basis. For cases in which analytical solutions exist (i.e., Cases 1 and 2), the mean standard deviation sξðtÞ of the
parameter ξ (number concentration N or particle size distribution function which is expressed in terms of Pk (the probability
of obtaining a cluster obtaining k primary particles)) for three MC simulations with respect to the analytical solutions are
calculated according to (Zhao et al., 2007; Zhao & Zheng, 2009a)

sNðtÞ ¼
1
Q

∑
Q

i ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
t

Z t

0

NMCðiÞðtÞ�NASðtÞ
NASðtÞ

" #2

dt

vuut ; ð15Þ

sdðtÞ ¼
1
Q

∑
Q

i ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

tðvmax�vminÞ
Z t

0

Z vmax

vmin

ðPAS
k ðtÞ�PMCðiÞ

k ðtÞÞ2dvdt
s

: ð16Þ

where Q is the total number of MC repetitions (Q¼3 in this paper); the superscript “AS” represents the analytical solutions
(Leyvraz, 2003) and “MC(k)” means the numerical result of the k-th MC simulation.

For Cases 4 and 5 in which some benchmark solutions exist (e.g., two Brownian coagulation cases), we compare the
normal-DWMC and fast-DWMC methods with regard to self-preserving distributions.

3.2.1. Case 1: Constant coagulation kernel with initial monodispersed population
The normal-DWMC and fast-DWMC methods with time-driven mode or event-driven mode are utilized to simulate the

case. Figure 4 presents the relative error of number concentration N(t), the particle size distribution function Pk(t), and the
standard deviations of N(t) and Pk(t). Generally, all methods keep strictly mass conversation in coagulation dynamics, and
predict the number concentration and size distribution well. The relative error of N(t) increases as time evolution; however
it is still constrained between 71.5% (Fig. 4(a)) and the standard deviation sN tends to stabilization (Fig. 4(b)). Similar
phenomenon can be found for the size distribution. The computed Pk at 10τcoag agrees well with the analytical solutions for
ko20; however the fluctuations of the computed distributions increase at the high-end of the distribution because of the
smaller number of particles in this size range (k420). sd first increases sharply, and then decreases gradually to a steady
value at 100τcoag.

It is also obvious from Fig. 4 that the event-driven MC has higher accuracy than the time-driven MC, and the normal-
DWMC is more accurate than the fast-DWMC method. This is not very surprising. The event-driven version is more accurate
because events are fully uncoupled among different time steps, while the time-driven mode is faster because more events
are simulated within one time step. For this case, CPU costs consumed by the four MCs are in the order: normal-DWMC with
event-driven mode (abbreviation “Normal-ED” in Fig. 4)4normal-DWMC with time-driven mode (Normal-TD)4fast-
DWMC with event-driven mode (Fast-ED)4fast-DWMC with time-driven mode (Fast-TD). The fast-DWMC methods obtain
remarkable speed-up ratio compared to the normal-DWMC methods, at the cost of slight loss in accuracy. It can be
explained by “the waiting time calculated in the normal-DWMC which is more accurate than that in the fast-DWMC”. In the
fast-DWMC, the error in time step leads to the simulation process that exceeds or lags behind the real process, which makes
particle number concentration and PSDF deviate slightly from the real solutions.

3.2.2. Case 2: Linear coagulation kernel with initial monodispersed population
The results presented in Fig. 5 show that there is only little difference in computational accuracy between the normal-

and fast-DWMC methods. With regard to the number concentration, in the initial stage (about to0.04τcoag), the normal-
DWMC methods perform more accurately; while t40.1τcoag the error in the number concentration for all methods
practically collapses onto a single curve that increases slowly with time (as shown in Fig. 5(b)). It depicts that all methods
yield nearly identical error in the number concentration as time evolves, although there is evident difference in relative
error of number concentration (as shown in Fig. 5(a)). Note that the relative error is less than 0.4% for all MCs. Further, the
error in the size distribution is larger for the fast-DWMC methods and for the time-driven methods. The error in the size
distribution shows no convergence trend for all four methods. sd in the event-driven MCs tends to steady states however
continues to decline in the time-driven MCs when t40.1τcoag.



Fig. 4. Constant coagulation kernel case: (a) number concentration; (b) error in number concentration; (c) size distributions; and (d) error in size
distributions.
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The different trends of sN and sd for different MCs in Cases 1 and 2 should be ascribed to case difference. In Case 1, the
weighted normalized kernel and majorant kernel are related only to the weight of simulation particle; however they are
related to both the weight and size in Case 2. As time evolves the sizes and weights among simulation particles differ more
and more. So β̂

0
max may overestimate more than the real β0max in Case 2, which results in more rejections in the fast-DWMC

methods. As a result, for Case 2 the waiting time estimated in the fast-DWMCmethods may be closer to the accurate waiting
time, and then the fast-DWMC methods perform higher accuracy in Case 2 than in Case 1 (as presented in Figs. 4 and 5),
at the cost of lower efficiency (as presented in Fig. 2). In conclusion, an appropriate representation of β̂

0
and the resultant

β̂
0
max are very important for the performance of the fast-DWMC methods.

3.2.3. Case 3: Constant coagulation kernel with initially polydispersed population
Now we test the fast-DWMC for coagulation case with initially polydispersed size distribution, in which simulation

particles should be differentially weighted before MC simulation. In this case, initial particle size distribution is exponential
distribution

nðv;0Þ ¼N0=vg0 e�v=vg0 ð17Þ
where the geometric mean particle volume is vg0; all the parameters are listed in Table 2. The continuous polydispersed real
particle population is discretized into 200 sections by logarithmically spaced law between the largest and the smallest sizes.
Every section has at least 10 simulation particles at the beginning of MC simulation; and then the total number of simulation
particles is 4040.

The numerical results of the fast-DWMC method, the normal-DWMC method and analytical solutions (Williams &
Loyalka, 1991) are shown in Fig. 6. It is found that the two methods can capture the first two moments (i.e., number



Fig. 5. Linear coagulation kernel case: (a) number concentration; (b) error in number concentration; (c) size distributions; and (d)error in size
distributions.
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concentration N and mass concentration M) and particle size distribution function very well. With regard to number
concentration and mass concentration, there are only slight differences between the two DWMC methods (as shown in
Fig. 6(a)). The errors in N and M from the fast-DWMC are slightly greater than these from the normal-DWMC (as shown in
Fig. 6(b)). With regard to the size distribution, it is difficult to select a better MC method from the results at t¼10τcoag
(shown in Fig. 6(c)). The PSD results from the fast-DWMC and normal-DWMC oscillate around the analytical solutions.

3.2.4. Cases 4 and 5: Brownian coagulation with initial monodispersed population
Although no analytical solution exists for Brownian coagulation in the continuum and free molecular regimes, the

discrete-sectional models (Vemury & Pratsinis, 1995) provided classical benchmark solutions of self-preserving particle size
distributions. In the self-preserving formulation (Friedlander & Wang, 1966), the dimensionless particle size is defined as
η¼ v=v¼Nv=M, and the dimensionless number distribution function as ψ ¼Mnðv; tÞ=N2, where v is the average volume,
N and M are the number and mass concentrations respectively.

The simulation parameters of the two cases are listed in Table 2. Generally all MC methods simulate the self-preserving
size distributions very well. The normal-DWMC and fast-DWMC methods show similar performance within the size range
from 0.01v to 10v. However, at the two edges of size distributions for the two cases, the results of the fast-DWMC methods
deviate obviously from the benchmark solutions and that of the normal-DWMC methods. We still ascribe the accuracy loss
in the fast-DWMC to error in time-step. With respect to each discrete time-step and the total evolution time (which is the
accumulation of discrete time-step), we compared their differences between the fast-DWMC and the normal-DWMC. The
results of the normal-DWMC method is considered here as benchmark; the relative errors in time step and evolution time
are defined as

δΔt ¼ jΔtF�ΔtNj
ΔtN

; ð18Þ

δt ¼
jtF�tNj

tN
: ð19Þ



Fig. 6. Constant coagulation kernel with initial exponential distributed population (Case 3); (a) the time evolution of number concentration and geometric
mean size; (b) error in number concentration and mass concentration; and (c) the time evolution of PSD.
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where ΔtF and ΔtN are the calculated time step in the fast-DWMC and normal-DWMCmethods respectively; tF and tN are the
corresponding evolution time. The two relative errors are presented in Fig. 7(c) and (d) (for Case 4) and in Fig. 8(c) and(d) (for
Case 5). It is found that the relative errors in time step are comparatively larger and more fluctuating. The relative error in time
step is limited within 5% for Case 4 and 3% for Case 5. The relative errors in evolution time fluctuate around 0.15% for the two
cases. Considering that the fast-DWMC can obtain speed-up ratio of about 10,000 (for 10,000 simulation particles), slight loss in
accuracy is totally worthy.

The fast-DWMC can improve efficiency greatly, at the same time guarantee accuracy favorably. The good performance of
the fast-DWMC methods is ascribed to appropriate choice of the weighted majorant kernel in nature. Both the normalized
kernel β0ij and the weighted majorant kernel β̂

0
ij relate to particle size and weight, which both change during MC simulation.

In order to keep appropriate rejection numbers in the AR process to achieve nice trade-off between computational cost and
computational accuracy, it is necessary to keep the ratio (θ) of β̂

0
max to β0max within a stable range. The ratios θð ¼ β̂

0
max=β

0
maxÞ

for the two cases are presented in Figs. 7(b) and 8(b). The ratio in the Brownian coagulation case in the free molecular
regime fluctuates around about 1.3, except for the initial stage (θ¼2 here). And for the Brownian coagulation case in the
continuum regime θ fluctuates within 5–6, except for the initial stage (θ¼8 here). The ratio θ in Case 5 is generally greater
than that in Case 4, which leads to higher accuracy (seeing relative error in time step and evolution time) while lower
efficiency (shown in Fig. 2) in Case 5.
4. Conclusions

As known, for a particle population with Ns simulation particles, the total number of possible coagulation pairs is
Ns

2

� �
¼ ðNsðNs�1ÞÞ=2. The normal Monte Carlo for population balance needs a double looping over all simulation particles

to obtain the coagulation rate, and then calculate the waiting time between two successive events. The computational cost is



Fig. 7. Brownian coagulation kernel in the free molecular regime (Case 4): (a) self-preserving size distributions; (b) β̂
0
max=β

0
max trends over time; (c) error in

time step; and (d) error in evolution time.
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thus O(Ns
2
). In order to improve MC efficiency, the particle pairs involved in the acceptance–rejection process, which are

selected at random, were used to approximate a random sample of all coagulation pairs. That is, the mean of all coagulation
kernels of particle pairs involved in the acceptance–rejection process was considered as the mean coagulation kernels of all
possible coagulation pairs. The coagulation rate and the waiting time were thus calculated from the approximated mean
coagulation kernel. The key issue of efficient PBMC was how to approximate the maximum coagulation kernel with low cost.
The majorant was introduced to transform a traditional coagulation kernel to a majorant kernel, in such a way that the
maximum value of this majorant kernel was obtained by only a single looping over all simulation particles. In this paper we
aimed for the fast simulation of differentially-weight Monte Carlo, and thus proposed a method to construct the weighted
majorant kernel (which relates to particle size and weight). Numerical tests showed the ratio of the maximum weighted
majorant kernel to the maximum normalized coagulation kernel is kept within a stable range, which is essential for high
accuracy and high efficiency of the fast-DWMC method. In order to test the performance of the fast-DWMC method, five
special coagulation cases for which analytical solutions or benchmark solutions exist were simulated. Simulation results
showed the CPU time required was only O(Ns), and very remarkable speed-up ratio was achieved. At the same time, the
errors in time step, evolution time, and accordingly, number concentration, mass concentration, and particle size
distribution function were within acceptable ranges (there were only slight loss in accuracy compared to the normal-
DWMC method). On the whole, the fast-DWMC method presented here can achieve nice trade-off between the
computational accuracy and cost, which is usually impossible for the normal DWMC methods.

The fast-DWMC method can be extended easily to simulate single-particle events (for example, surface growth/
dissolution, deposition, breakage, etc.) and nucleation. And the method is also very suitable for multivariate and
multi-dimensional population balance modeling. Furthermore, it is also possible to utilize similar ideas in classical direct
simulation Monte Carlo for gas dynamics to improve computational efficiency.



Fig. 8. Brownian coagulation kernel in the continuum regime (Case 5): (a) self-preserving size distributions; (b) β̂
0
max=β

0
max trends over time; (c) error in

time step; and (d) error in evolution time.
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