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The compositional distribution in two-component aggregative mixing of initially bidis-
perse particle populations can be described by a Guassian-type function, which is deter-
mined by the mixing degree χ (assessed quantitatively by the mass-normalized power
density of excess component A), and the overall mass fraction ϕ (a known value from the
initial feeding condition) of component A. It is known that χ will reach a steady-state
value χ1 over time (factually, after attaining the self-preserving size distribution), and χ1
is only relevant to ϕ, namely the feeding condition. However, the dynamic evolution of χ
before the attainment of a steady-state value is not exactly known. In this paper, the fast
differentially-weighted Monte Carlo method for population balance modeling was used to
predict the dependence of time-varied χ on initial feeding conditions through hundreds of
systematically varied simulations. It is found that χ is subject to an exponential decay,
largely depending on the ratio of steady-state mixing degree and its initial value (χ1/χ0).
With the explored exponential formulas for the dynamic mixing degree, it is possible to
attain an optimum control on the compositional distributions during two-component
aggregation processes through selecting the initial feeding parameters, and the time
needed for reaching a steady-state is investigated.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

In the research of particle behavior, multicomponent aggregation has become a focal point, since it represents the basic
physical mechanism of size enlargement (Hosseini, Bouaswaig, & Engell, 2013), and has a wide application in wet granu-
lation (Barrasso & Ramachandran, 2012), crystallization (Hofmann & Raisch, 2013), atmospheric aerosols (Kuang, McMurry,
& McCormick, 2009), granulation of powders (Iveson, 2002) and synthesis of nanoparticles (Friedlander & Smoke, 2000) etc.
Nevertheless mostly studies focused on single component systems, theoretical analysis of two-component aggregation is
just beginning. In order to study different particles properties during these processes, the evolution of the degree of mixing
is of vital importance. Matsoukas, Lee, and Kim (2006) firstly studied the sum-square of excess component to quantify the
degree of blending and certified it was constant under partially mixed states and kernels of the sum type. Then Lee, Kim,
Rajniak, and Matsoukas (2008) defined a related intensive parameters χ (mixing degree) through normalizing the sum-
square of excess component by the mass of all granules, which was proposed as the mass-normalized power density of
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excess component. Furthermore, the relationship between χ and mean particle size can test how the kernel influences
blending of components (Matsoukas, Kim, & Lee, 2009) and the precision of computation method (Lee et al., 2008). χ is
defined as (Marshall, Rajniak, & Matsoukas, 2011):

χ ¼ X2

M
¼
R1
0 dm

Rm
0 dmAx2f m; tð Þg mAð jm; tÞR1

0 dm
Rm
0 dmAmf m; tð Þg mAð jm; tÞ ð1Þ

where x is the amount of component A in excess of the amount ϕm: x¼mA�ϕm¼mA�ϕðmAþmBÞ; X2 is the sum-square of
excess component; ϕ is the overall mass fraction of component A, keeping constant during aggregation:
ϕ¼NA0mA0=ðNA0mA0þNB0mB0Þ; f(m,t) is the component-independent particle size distribution function so that f(m,t)dm
represents the number concentration of particles in the mass range of m to mþdm; g(mA|m) is the compositional dis-
tribution of component A, which is the fraction of particles of mass m that contain component A in the mass amount
(mA,mAþdmA).

Matsoukas et al. (2006) stressed the steady-state value of χ was the single most important parameter that decided the
width of the distribution of components in all size classes and this value largely depended on the initial state, based on
kernels that are independent of composition. This probability density g(mA|m) was certified as a Gaussian-type function
theoretically in the steady state condition, then this conclusion was extended to the evolution process which could be
expressed as (Lee et al., 2008; Zhao & Kruis, 2014):

gðmAjm; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2πmχ

p exp � mA�ϕm
� �2

2mχ

" #
ð2Þ

Depending on both composition-independent and -dependent kernels, it is found that the compositional distributions
become self-preserving, when the degree of mixing (χ) reaches its steady-state value (Krapivsky & Ben-Naim, 1996; Vigil &
Ziff, 1998). And this Gaussian-type form was validated through PBM based on the constant-number method and the
differentially-weighted Monte Carlo method (Lee et al., 2008; Zhao, Kruis & Zheng, 2011). According to analysis and model
fitting from hundreds of simulations, the steady-state value of χ (χ1) was well predicted by the initial feeding condition for
Brownian aggregation either in the free-molecular (Zhao & Kruis, 2014):

χ1
χ0

¼ exp �2ðϕ�ϕβ ¼ 1Þ2
h i

ð3Þ

or in the continuum regime:

χ1
χ0

¼ exp �ðϕ�ϕβ ¼ 1Þ2=
ffiffiffi
2

ph i
ð4Þ

where ϕβ¼1 is a simplified expression of ϕ, when particle diameter ratio β is set as 1: ϕβ ¼ 1 ¼ αγ
1þαγ. α is the number ratio; γ

is the density ratio between two components.
As there exists a prediction formula of χ1, we assume that there is a certain functional relation between χ(t) and the

initial state parameters. This paper concentrates on investigating the whole evolution of the mixing degree based on reliable
population balance modeling. First, based on Eq. (2), with known χ(t), the compositional distribution of each component can
be obtained through the probability density function g(mA|m)dmA. In this way, it is possible to predict and control the whole
evolution of the compositional distribution and the degree of mixing to optimize two-component aggregative mixing by
properly selecting the initial mass and number concentrations of component A and B in the feeding. Second, as an ultimate
state, the steady-state is only approached by the previous investigators through waiting a long time (Matsoukas et al., 2009;
Zhao & Kruis, 2014). The time needed (time-lag) to reach the steady-state can be obtained here.

For example, about gas-fluidization of nano-particle mixtures in magnetically assisted fluidized bed, the mixing degree
and the compositional distributions of SiO2 and ZnO can affect the fluidization stability (Zeng, Zhou & Yang, 2008). Thus if
we know how the initial condition affects the mixing degree, it is able to optimize the fluidization performance in the whole
process. Meanwhile this discussion can contribute to the mechanism explanation between the component distribution and
the fluidization behavior. The dynamic evolution of the mixing degree is helpful for the optimal control of this kind process.
From another point of view, during the Fe–Pt synthesis, we can know how long it takes to reach the steady-state or a certain
composition distribution. Because Fe–Pt alloys with different Fe/Pt compositions have various crystal structures, chemical
and physical properties, leading to different nominal atomic rations. It is helpful for investigating the way of crystal growth
and the formation of different nominal atomic rations (Liu et al., 2014).

The aim of this paper is to gain insight into the functional relation between χ(t) and the certain parameters in the initial
state of two-component aggregation processes, such as χ0 (here χ0 ¼ ð1�ϕÞϕðmA0ð1�ϕÞþmB0ϕÞ), and the steady-state
value χ1. The paper is organized as follows: first, in Section 2, to simulate two-component PBM we introduce the differ-
entially weighted Monte Carlo (DWMC) method. Then in Section 3, the numerical results for Brownian aggregation are
shown. By a series of initial conditions, the possible influencing factors on χ(t)/χ0 are analyzed and an empirical formula
giving an estimation of χ(t)/χ0 is found. Finally, the empirical formula is validated and conclusions are given.
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2. Methodology

Here the population balance-Monte Carlo (PBMC) method is adopted, which are capable of simulating a large number of
internal variables in a straightforward manner. As the governing PBE, the Smoluchowski's equation for two-component
aggregation is (Lushnikov, 1976):

∂nðmA;mB; tÞ
∂t

¼ 1
2

Z mA

0

Z mB

0
KðmA�m0

A;mB�m0
B;m

0
A;m

0
BÞnðmA�m0

A;mB�m0
B; tÞnðm0

A;m
0
B; tÞdm0

Adm
0
B

�nðmA;mB; tÞ
Z 1

0

Z 1

0
KðmA;mB;m0

A;m
0
B; tÞnðm0

A;m
0
B; tÞdm0

Adm
0
B ð5Þ

Here KðmA;mB;m0
A;m

0
BÞ is the aggregation rate coefficient (kernel) between a particle (mA,mB) and another particle ðm0

A; m
0
BÞ.

The differentially-weighted Monte Carlo method (DWMC) method is adopted here to determine the distributions of the
multivariate properties over their full-spectrum more accurately, whereas conventional MC methods are accurate only in
those regions of the spectra with sufficient simulation particles (Zhao, Kruis, & Zheng, 2010, 2011; Zhao & Zheng, 2011,
2013). The weight of a differentially weighted particle i, wi, indicates that the simulation particle i represents wi real particles
having the same internal variables as i.

In the transition regime A, the kernel is composed by Brownian coagulation kernel in the slip flow regime Ksf
ij , and

Brownian coagulation kernel in the free molecular regime K fm
ij , where Ksf

ij ¼ Kco v1=3i þv1=3j

� �
Ci

v1=3i

þ Cj

v1=3j

� �
, sf K̂

0

ij ¼

2K1wjCj 1þCmax
Cj

þ vmax
vj

� �1=3
þCmax

Cj

vj
vmin

� �1=3� �
; the slip correction factor Cj ¼ 1þ2:514λ 6vj

π

� ��1=3
,Cmax ¼ 1þ2:514λ 6vmin

π

� ��1=3
; λ

is the mean free path of the medium (Kazakov & Frenklach, 1998; Patterson, Singh, Balthasar, Kraft, & Wagner, 2006).
However in the Brownian coagulation in the transition regime B, we adopt the physically realistic Brownian collision

kernel (Jacobson, 2005); for normal kernel, the Stokes-Cunningham slip correction factor is redefined as Ci ¼
1þ λ

di
2:493þ0:84expð�0:435di=λÞ
	 


; the diffusion coefficient for particle i is Di ¼ kBT
3πμdi

5þ4Kni þ6Kn2i þ18Kn3
i

5�Kni þð8þπÞKn2
i

� �
; the velocity of

particle i is ci ¼ 8kBT
πmi

� �1=2
; the transition parameter of particle i is gi ¼ 1

3dili
diþ lið Þ3� d2i þ l2i

� �3
2

� �
�di; for majorant kernel, two

simplified kernel is
_
K

0
iðdi; djÞ ¼ Ca diþdjþCb d1=2i þd1=2j þ Cc

d1=2i

þ Cc

d1=2j

� �� �
d�1
i þd�1

j þCcd
�2
i þCcd

�2
j

� �
and

_
K

0
2ðdi; djÞ ¼ K fm

ðdiþdjÞ2ðd�3=2
i þd�3=2

j Þ respectively, where Ca ¼ 2kBT
3μ ; Cb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16kBTρP=27

p
πμ ; Cc ¼ 3:39λ.

Then the fast DWMC method is used to accelerate PBMC simulation (Xu, Zhao, & Zheng, 2014, 2015), where the majorant
of coagulation kernel K̂ij is developed to calculate the coagulation probability of all particle pairs by single looping over all
particles rather than double looping. We consider six kinds of kernel, especially for Brownian kernel in the transition
regime, which is added here by two different kernels A and B. One is simplified; the other is more complex and realistic
(Wei, 2014).

Table 1 summarizes six typical aggregation kernels in different regimes and their weighted majorant kernels, and Table 2
shows the specific conditions in simulation cases.
3. Results

3.1. χ(t)/χ0 for Constant coagulation and Linear coagulation

The fast DWMC is used to simulate 25 valid cases (Case 5, 6 in Table 2) of more simplified kernel Constant coagulation
and Linear coagulation, respectively. It has been concluded that if the kernel can be expressed in additive contributions from
granule, i.e.:

K mA;mB;m0
A;m

0
B

� �¼ K mA;mBð ÞþK m0
A;m

0
B

� � ð6Þ

Leading (Matsoukas et al., 2009)

dχ=dt ¼ 0 ð7Þ

In this case, the variance of excess solute is constant during aggregation and equal to its value at zero, regardless of initial
conditions. The simulation results certify the conclusion, that all the cases with varied α, β leading to the same constant
evolution for Linear coagulation. Here time is made dimensionless with the characteristic aggregation time scale, τcoag,
which is defined as 1=ð2K0N0Þ for an initially bidisperse distribution, and K0 is the initial mean kernel over all possible
particle pairs. However for more usual cases like Brownian coagulation, Eq. (7) is not satisfied any more, which is
emphasized in this paper.



Table 2
Conditions used in simulation cases: the volume of the computational domain, the number concentration ratio α and particle diameter ratio β are varied in
the simulations.

NA0 (m�3) dA0 (μm) ρA0 (kg m�3) ρB0 (kg m�3) T (K) μ (Pa s)

Case 1, Brownian coagulation in the free molecular regime 9�1021 0.001 21.45�103 21.45�103 1800 5.65�10�5

Case 2, Brownian coagulation in free-molecular regime 9�1021 0.001 7.87�103 21.45�103 1800 5.65�10�5

Case 3, Brownian coagulation in continuum regime 3�1015 0.5 2.00�103 2.00�103 300 1.81�10�5

Case 4, Brownian coagulation in transition regime A and B; 4�1021 0.002 7.87�103 7.87�103 1800 5.65�10�5

Case 5, Constant coagulation 4�1021 0.002 7.87�103 7.87�103 1800 5.65�10�5

Case 6, Linear coagulation 4�1021 0.002 7.87�103 7.87�103 1800 5.65�10�5

Table 1
Normal kernels and weighted majorant kernels.n

Case Formulation

Constant coagulation Normal kernel Kij ¼A
Weighted majorant kernel K̂

0
ij ¼ 2Awj

Linear coagulation Normal kernel Kij ¼AðviþvjÞ
Weighted majorant kernel K̂

0
ij ¼ 2Awjvj 1þvmax

vj

� �
Brownian coagulation in the free molecular regime Normal kernel Kij ¼ K fmðv1=3i þv1=3j Þ2ðv�1

i þv�1
j Þ1=2

Weighted majorant kernel
K̂
0
ij ¼ 2

ffiffiffi
2

p
K fmv1=6j wj

vmax
vj

� �2=3
þ vmax

vj

� �1=6
þ1þ vmin

vj

� ��1=2
� �

Brownian coagulation in the continuum regime Normal kernel Kij ¼ Kcoðv1=3i þv1=3j Þðv�1=3
i þv�1=3

j Þ
Weighted majorant kernel

K̂
0
ij ¼ 2Kcowj 2þ vmax

vj

� �1=3
þ vmin

vj

� ��1=3
� �

Brownian coagulation in the transition regime A Normal kernel
Kij ¼ 1

Ksf
ij
þ 1

K fm
ij

� ��1

Weighted majorant kernel
K̂
0
ij ¼ 1

sf K̂
0
ij

þ 1
fmK̂

0
� ��1

Brownian coagulation in the transition regime B Normal kernel
Kij ¼ 2πðdiþdjÞðDiþDjÞ di þdj

di þdj þðg2i þg2j Þ
1
2
þ 8ðDi þDj Þ

ðdi þdj Þþ ðc2i þ c2j Þ
1
2

 !�1

Weighted majorant kernel K̂
0
ij ¼ 2wmax min ðK̂ 0

1þ K̂
0
2Þ�1

n A is a constant number; K fm ¼ 3
4π

� �1=6 6kBT
ρp

� �1=2
, Kco ¼ 2kBT

3μ ; kB is Boltzmann's constant; T is the thermodynamics temperature of the medium; ρp is the
density of the particles; and μ is the viscosity of the medium.
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3.2. Screening the relevant parameters for χ(t)/χ0 in Brownian coagulation

During the whole evolution process, the value of χ(t)/χ0 usually keeps the same order from its initial value to its steady
one. Moreover, the steady value χ(t)/χ0 is able to be well predicted by initial feeding condition and parameters associated
with the Brownian aggregation kernel. So it is speculated that χ(t)/χ0 is largely controlled by the initial degree of mixing.
Introducing the following ratios:

α¼NA0

NB0
;β¼ dA0

dB0
; γ ¼ ρA

ρB
ð8Þ

Define the overall number fraction of component A:

ψ ¼ NA0

NA0þNB0
¼ α
1þα

ð9Þ

and calculate the overall mass fraction of component A:

ϕ¼ MA0

MA0þMB0
¼ αβ3γ

1þαβ3γ
ð10Þ
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It is possible to calculate the initial degree of mixing χ0 in the bidisperse case as (Lee et al., 2008; Matsoukas et al., 2009):

χ0 ¼ 1�ϕ
� �

ϕ mA0 1�ϕ
� �þmB0ϕ

� �¼ αβ3γ 1þαð Þ
1þαβ3γ
� �3mA0 ¼

ϕ 1�ϕ
� �2
1�ψ
� � mA0 ð11Þ

We concentrate on a large amount of simulation data, which is applied by the composition-dependent case (Case 2).
Taking α at 10 as an example with varied β, Fig. 1 shows the mass-normalized power density of excess component A (χ)
against time made dimensionless with the characteristic aggregation time scale, τcoag. It is discovered that the evolution of
χ(t)/χ0 is monotone decreasing, and its decreasing rate slows down gradually. With time goes on, it approaches steady-state
value. Among kinds of elementary functions, we deduce if it can be fitted with an exponential decay, in the formation:

χðtÞ=χ0 ¼ χ1=χ0þC1expð�t=C2Þ ð12Þ
where χ(t)/χ0 decreases at a rate proportional to its current value:

d
χðtÞ
χ0

dtp� 1
C2

χðtÞ
χ0



ð13Þ

Here C2 is called exponential time constant, as a relevant parameter of the rate. Meanwhile Eq. (13) satisfies the Markov
model in the DWMC method, where future states depend only on the present state and not on the sequence of events that
preceded it.

As shown in Fig. 2, more precisely at logarithmic axis, where MC simulation is repeated five times, and the standard error
of Eq. (12) fitting is 6.325�10�4. In addition, we can see the exponential law is fairly coincident with the simulation value
during the evolution process, even if the steady-state value is not pretty stable. As long as the dimensionless steady-state
Fig. 1. χ(t)/χ0 against the dimensionless time with α fixed at 10, varied β (Case 2).



Fig. 2. χ(t)/χ0 as function of the dimensionless time: satisfying exponential function (Case 1).
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value is below 0.9, when there is a considerable decrease, the exponential formulation is able to describe the evolution
process.

We introduce four coefficients altogether: C1, C2, C3, C4, to calculate the coefficients in the fitting function step by step,
where C2¼ f(C3, C4). Firstly, it is evident from Eq. (12) at the beginning of the evolution

C1þχ1=χ0 ¼ 1 ð14Þ
At t¼0, χ(0)/χ0 is equal to 1. As shown in Fig. 3, MC simulation result agrees well with Eq. (14).
Then, we focus on C2, which is a key parameter determining the evolution rate. Based on population balance modeling,

the evolution of mixing degree is calculated as (Lee et al., 2008)

dχ
dt

¼ 1
M

Z 1

0
dm

Z 1

0
dm0

Z m

0
dmA

Z m0

0
dm0

Axx
0 � K mA;mB;m0

A;m
0
B

� �
�f m; tð Þg mAð jm; tÞf m0; tð Þg m0

A

� ��m0; tÞ ð15Þ

where KðmA;mB;m0
A;m

0
BÞ is the aggregation rate coefficient (kernel) between a particle (mA,mB) and another particle

ðm0
A;m

0
BÞ. Thus all the possible influence factors should be the contained in the Brownian aggregation kernel, which is

detailed written in Table 1. Therefore χ(t)/χ0 may be related to the following similar parameters: T, NA0, dA0, ρA, α, β, and γ.
For this analysis, it is certified that using different Twhile keeping the other parameters constant, does not influence χ(t)/

χ0 as well as χ/χ0. Similarly, it is found that NA0, dA0, and ρA are non-influencing parameters for both χ1/χ0 and χ(t)/χ0 as
long as the parameters α, β, and γ are kept constant (Zhao & Kruis, 2014). The independence of the time evolution of the
degree of mixing from the values of T, NA0, dA0, and ρA is due to the dimensionless representation of the results and the
dimensionless time τcoag.

Obviously, the left three parameters α, β, and γ is thus concluded to be the parameters of the function χ(t)/χ0.
The steady-state χ1/χ0 and the evolution χ(t)/χ0 depend on same parameters α, β, and γ. χ1/χ0 has already been

established by a combination of them as Eqs. (3) and (4) shown. We want to know if there exists a one-to-one corre-
spondence between χ(t)/χ0 and χ1/χ0. However with a constant χ1/χ0, there can be an evidently different evolution process
as Fig. 4 show. To further explore their relation, the control variable method is adopted here. Once two parameters, for
example α and γ are fixed, a deterministic relation between χ1/χ0 and the remaining parameter β can be obtained by fitting
the PBMC simulation results. Certainly, as an important indirect parameter χ1/χ0, which is predicted by Eq. (3) in free
molecular regime, it should be taken into account to help find regulations between χ(t)/χ0 and α, β, γ.

3.3. χ(t)/χ0 as function of α and β: composition-independent case (γ¼1) in the free molecular regime

With respect to composition-independent Brownian aggregation in the free molecular regime (i.e., ρA¼ρB, so that γ ¼ 1),
we vary systematically the relevant parameters to obtain the relation between C2 and α, β. And it is already proved that in
the free-molecular regime χ1/χ satisfies Eq. (3). When γ ¼ 1 and α¼0.1, C2 is a function of χ1/χ0, with different β. We use
the simulation results of the fast DWMC method to fit the function C2¼ f(χ1/χ0), which is fitted to the following linear
function, as shown in Fig. 5:

C2 ¼ C3 lnðχ1=χ0ÞþC4 ð16Þ



Fig. 3. χ1/χ0 vs. C1: satisfying Eq. (14) (Case 1).

Fig. 4. χ1/χ0 vs. C2: satisfying Eq. (12) (Case 1).
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We simulate 7�19 cases, where α¼0.03, 0.067, 0.1, 0.2, 0.3, 0.43, 0.67 and ϕ are given a value among {0.05, 0.1, 0.15, 0.2,…,
0.90, 0.95}, respectively. Each one is well fitted into a linear function with an approximately equal slope C3. Under every
specified α, the values of the fitting constants C3 are shown in Fig. 6, where it can be seen that the constants C3 is close to 2.5.

Obviously, C4 (the intercept presented in Fig. 6) is the function of α, C4 ¼ f ðαÞ. As shown in Fig. 8, C4 is fitted into the
following formula as:

C4 ¼ 2 αþ1=α
� �0:44 ð17Þ

To summarize, firstly we assume χ(t)/χ0 can be fitted with an exponential decay as Eq. (12). We introduce four coeffi-
cients C1, C2, C3, and C4 altogether. Here C2 is called exponential time constant, as the key parameter to the mixing degree,
where C2¼ f(C3, C4). Under every specified α, the values of the fitting constants C3 are shown in Fig. 6, where the value is set
as 2.5. C4 as the function of α is shown in Fig. 7 as Eq. (17).

Therefore, χ(t)/χ0 as a function of t can be effectively approximated as:

χðtÞ
χ0

¼ 1�χ1
χ0

� �
exp �t= 2:5 ln

χ1
χ0

� �
þ2ðαþ1=αÞ0:44

� �� �
þχ1
χ0

ð18Þ



Fig. 5. C2 as a function of χ1/χ0: γ¼1 and α¼1 in the free molecular regime. The linear best fit is obtained with Eq. (16). (Case 1).

Fig. 6. Constants C3 obtained from fitting Eq. (16) to simulation results from the MC simulations (Case 1).
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If all the parameters are related to the initial state:

χðtÞ
χ0

¼ 1�exp �2ðϕ�ϕβ ¼ 1Þ2
h in o

exp �t= �5ðϕ�ϕβ ¼ 1Þ2þ2ðαþ1=αÞ0:44
h in o

þexp �2ðϕ�ϕβ ¼ 1Þ2
h i

ð19Þ

so that it can be concluded that the main parameters determining χ(t)/χ0 are the steady value of χ(t)/χ0 overall mass fraction
of component A, ϕ, and initial number ratio ϕ¼ϕβ¼1, when γ¼1.

In order to validate the reliability of this formula prediction, we set α at 10 as an example with varied β. Correspondingly,
take ϕ¼0.077, 0.2, 0.345, 0.46, 0.58, and 0.69 as an example. Figure 8 shows the mass-normalized power density of excess
component A (χ) against time made dimensionless with the characteristic aggregation time scale, τcoag, which is the
comparison between function prediction and the exponential decay fitting from MC simulation.

We examine whether the general exponential statistics Eq. (19) is valid for more general cases (Case 1 in Table 1) when
varying both ϕ and ψ. The predictions from Eq. (19) are shown in Fig. 9. We simulate 9�9 cases, where ϕ and ψ are given a
value among {0.1, 0.2, …, 0.90}, respectively. We present the simulation results and the model prediction from Eq. (18) in
Fig. 9, including the standard deviations which are under 0.2 for the 81 cases (obtained by repeating each simulations
5 times). To emphasize, we ignore the cases, of which steady value χ1/χ0 is over 0.9, for its slender evolution possess. In



Fig. 7. C4 as a function of α: γ ¼ 1 in the free molecular regime. The best fit is obtained with Eq. (17). (Case 1).

Fig. 8. Comparison between prediction and MC simulations of evolution for 6 different combinations of ϕ (α¼1, γ¼1, Case 1).
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view of the inherent statistical noise of MC simulations, the relation between C2 and the initial feeding conditions is rea-
sonably described by Eq. (18) for composition-independent aggregative mixing (γ¼1).

3.4. χ(t)/χ0 as function of α and β: in the continuum regime

In order to explore the dependency of χ(t)/χ0 on the aggregation kernel, the same study is performed now using the
kernel for the continuum regime. It is noted that this Brownian aggregation kernel is composition-independent in nature
since it is related to the particle size (volume) rather than the particle mass. The fast DWMC is used to simulate 25 valid
cases (Case 3 in Table 2) to explore the relation between χ(t)/χ0 and the feeding conditions. Again, χ(t)/χ0 satisfies the
exponential function, as expressed in Eq. (21):

C2 ¼ 15 lnðχ1=χ0Þþðαþ1=αÞ0:75þ6 ð20Þ

χðtÞ
χ0

¼ 1�exp �ðϕ�ϕβ ¼ 1Þ2=
ffiffiffi
2

ph in o
exp �t= �10:6ðϕ�ϕβ ¼ 1Þ2þðαþ1=αÞ0:75þ6

h in o

þexp
h
�ðϕ�ϕβ ¼ 1Þ2

ffiffiffi
2

p i.
ð21Þ



Fig. 9. Comparison between of Eq. (18) and MC simulations of C2 for 81 different combinations of ϕ and ψ (Case 1).
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3.5. χ(t)/χ0 as function of α and β: in the transition regime A and B

Firstly, we certify the steady-state value χ1 which satisfies different empirical formula Eq. (3) in the transition regime A,
and Eq. (4) in the transition regime B. Similarly, the fast DWMC is used to simulate 25 valid cases (Case 4 in Table 2) in the
transition regime A and B respectively. In the transition regime A, by the simplified kernel, the conclusion is expressed in
Eqs. (22) and (23):

C2 ¼ 2:1 lnðχ1=χ0Þþðαþ1=αÞ0:5þ1 ð22Þ

χðtÞ
χ0

¼ 1�exp �2ðϕ�ϕβ ¼ 1Þ2
h in o

exp �t= �4:2ðϕ�ϕβ ¼ 1Þ2þðαþ1=αÞ0:5þ1
h in o

þexp �2ðϕ�ϕβ ¼ 1Þ2
h i

ð23Þ

In the transition regime B, with physically realistic kernel, the conclusion is expressed in Eqs. (24) and (25):

C2 ¼ 10
ffiffiffi
2

p
lnðχ1=χ0Þþ6ðαþ1=αÞ0:2 ð24Þ

χðtÞ
χ0

¼ 1�exp �ðϕ�ϕβ ¼ 1Þ2=
ffiffiffi
2

ph in o
exp �t= �10ðϕ�ϕβ ¼ 1Þ2þ6ðαþ1=αÞ0:2

h in o
þexp �ðϕ�ϕβ ¼ 1Þ2=

ffiffiffi
2

ph i
ð25Þ
4. Discussion

C2 is the key parameter to control the evolution of mixing degree χ, the smaller C2, the faster evolving. Figure 10 puts four
predictor formulas together. C2 in the free molecular is less than it in the continuum regime under the same ϕ and ψ, as
particles of smaller diameter blend faster. From this point of view, the kernel in transition regime B is more accurate than A,
where the value of C2 lies between the free molecular regime and the continuum regime. Thus different kernels lead to
different value of C2, which can be used as a new benchmark for testing the kernels in multicomponent aggregation.

In addition, the time-lag for χ reaching to a steady state is equal to the time-lag for self-preserving distribution (Zhao et
al., 2011). Based on Eq. (12), we take the free molecular regime as an example. When χ(t)/χ0¼0.99χ1/χ0, the steady-state is
reached. And the time-lag can be calculated as:

tlag ¼ ln
0:01χ1
χ0

� �� �
2:5 ln

χ1
χ0

� �
þ2ðαþ1=αÞ0:44

� �
ð26Þ

where the unit of time is characteristic aggregation time scale τcoag, which is defined as 1/(2K̅0N0).
Also the compositional distribution is able to be calculated through the predict formula in the feeding condition. Since all

the above fitting formula is obtained under the condition of g¼1, here we further investigate the dependence of γ. Using
case 2, the synthesis of FePt nanoparticles is taken as an example (Lin et al., 2009). We use Eq. (19) to calculate dimen-
sionless mixing degree and substitute it into Eq. (2) for composition distribution. The result is well matched as Fig. 11 show.



Fig. 10. C2 as a function of ϕ and ψ in different regimes (γ¼1).

Fig. 11. Compositional distributions within selected intervals: comparison between the formula predictions and the PBMC simulations (Case 2).
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Thus Eq. (19) is valuable in the free molecular regime when γ¼ρFe/ρPt. Zhao & Kruis (2014) certified Eq. (3) seemed to be
able to predict χ1/χ0 reasonably, but with a decreasing reliability. However when we change the γ value, or take other
regimes with γa1, the reliability of the prediction function varies, for both steady-state value and process value. There
requires further study to determine a more accurate formula on various γ.
5. Conclusions

The feeding condition is of vital important for two-component aggregative mixing, where the whole evolution process is
able to be predicted based on the initial mixture state of the components, e.g. the ratio of the particle volume of the two
components at the start of the aggregation process. With respect to two-component aggregative mixing due to Brownian
coagulation with initially bidisperse distributions, simulations demonstrate the changing over time of mass-normalized
power density of excess component A. χ(t) can be characterized by an exponential function with a known steady-state value
of χ (χ1). This exponential-type function is determined by the number ratio and the particle diameter ration between two
components. We add the fitting function with the overall mass fraction of component A (Φ) and steady-state mixing degree
(χ1) to simplify the formation. A good estimation of χ(t) is given by the exponential function in Eq. (19) for Brownian
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aggregation in the free molecular regime, Eq. (21) in the continuum regime, and Eqs. (23) and (25) in the transition regime
for different kernel. So the time to reach the steady-state is known and the probability density g(mA|m) is able to achieve in
advance, e.g., the mixing degree during two-component aggregation process. The proposed functions would be conducive to
control the whole experimental investigation evolution of the composition of sufficiently large numbers of individual
particles formed by bicomponent aggregation.
Acknowledgments

This study was supported with funds from the National Natural Science Foundation of China (51276077, 51390494 and
51522603).
References

Barrasso, D., & Ramachandran, R. (2012). A comparison of model order reduction techniques for a four-dimensional population balance model describing
multi-component wet granulation processes. Chemical Engineering Science, 80, 380–392.

Friedlander, S. K., & Smoke, D. (2000). Haze: fundamentals of aerosol dynamics (p. 308)New York: Oxford University Press308.
Hofmann, S., & Raisch, J. (2013). Solutions to inversion problems in preferential crystallization of enantiomers—Part II: batch crystallization in two coupled

vessels. Chemical Engineering Science, 88, 48–68.
Hosseini, A., Bouaswaig, A. E., & Engell, S. (2013). Novel approaches to improve the particle size distribution prediction of a classical emulsion poly-

merization model. Chemical Engineering Science, 88, 108–120.
Iveson, S. M. (2002). Limitations of one-dimensional population balance models of wet granulation processes. Powder Technology, 124(3), 219–229.
Jacobson, M. Z. (2005). Fundamentals of atmospheric modeling. United Kingdom: Cambridge university press.
Kazakov, A., & Frenklach, M. (1998). Dynamic modeling of soot particle coagulation and aggregation: implementation with the method of moments and

application to high-pressure laminar premixed flames. Combustion and Flame, 114(3), 484–501.
Krapivsky, P., & Ben-Naim, E. (1996). Aggregation with multiple conservation laws. Physical Review E, 53(1), 291.
Kuang, C., McMurry, P., & McCormick, A. (2009). Determination of cloud condensation nuclei production from measured new particle formation events.

Geophysical Research Letters, 36(9).
Lee, K., Kim, T., Rajniak, P., & Matsoukas, T. (2008). Compositional distributions in multicomponent aggregation. Chemical Engineering Science, 63(5),

1293–1303.
Lin, J., Loh, L., Lee, P., Tan, T., Springham, S., & Rawat, R. (2009). Effects of target–substrate geometry and ambient gas pressure on FePt nanoparticles

synthesized by pulsed laser deposition. Applied Surface Science, 255(8), 4372–4377.
Liu, Y., Jiang, Y., Zhang, X., Wang, Y., Zhang, Y., Liu, H., & Yan, Y. (2014). Structural and magnetic properties of the ordered FePt3, FePt and Fe3Pt nanoparticles.

Journal of Solid State Chemistry, 209, 69–73.
Lushnikov, A. (1976). Evolution of coagulating systems: III. Coagulating mixtures. Journal of Colloid and Interface Science, 54(1), 94–101.
Marshall, C. L., Rajniak, P., & Matsoukas, T. (2011). Numerical simulations of two-component granulation: comparison of three methods. Chemical Engi-

neering Research and Design, 89(5), 545–552.
Matsoukas, T., Kim, T., & Lee, K. (2009). Bicomponent aggregation with composition-dependent rates and the approach to well-mixed state. Chemical

Engineering Science, 64(4), 787–799.
Matsoukas, T., Lee, K., & Kim, T. (2006). Mixing of components in two-component aggregation. AIChE Journal, 52(9), 3088–3099.
Patterson, R. I., Singh, J., Balthasar, M., Kraft, M., & Wagner, W. (2006). Extending stochastic soot simulation to higher pressures. Combustion and Flame, 145

(3), 638–642.
Vigil, R. D., & Ziff, R. M. (1998). On the scaling theory of two-component aggregation. Chemical Engineering Science, 53(9), 1725–1729.
Wei, J. (2014). A majorant kernel-based Monte Carlo method for particle population balance modeling. Aerosol and Air Quality Research, 14(3), 623–631.
Xu, Z., Zhao, H., & Zheng, C. (2014). Fast Monte Carlo simulation for particle coagulation in population balance. Journal of Aerosol Science, 74, 11–25.
Xu, Z., Zhao, H., & Zheng, C. (2015). Accelerating population balance-Monte Carlo simulation for coagulation dynamics from the Markov jump model,

stochastic algorithm and GPU parallel computing. Journal of Computational Physics, 281, 844–863.
Zeng, P., Zhou, T., & Yang, J. (2008). Behavior of mixtures of nano-particles in magnetically assisted fluidized bed. Chemical Engineering and Processing:

Process Intensification, 47(1), 101–108.
Zhao, H., & Kruis, F.Einar (2014). Dependence of steady-state compositional mixing degree on feeding conditions in two-component aggregation. Industrial

Engineering Chemistry Research, 53(14), 6047–6055.
Zhao, H., Kruis, F. E., & Zheng, C. (2010). A differentially weighted Monte Carlo method for two-component coagulation. Journal of Computational Physics, 229

(19), 6931–6945.
Zhao, H., Kruis, F. E., & Zheng, C. (2011). Monte Carlo simulation for aggregative mixing of nanoparticles in two-component systems. Industrial Engineering

Chemistry Research, 50(18), 10652–10664.
Zhao, H., & Zheng, C. (2011). Two-component Brownian coagulation: Monte Carlo simulation and process characterization. Particuology, 9(4), 414–423.
Zhao, H., & Zheng, C. (2013). A population balance-Monte Carlo method for particle coagulation in spatially inhomogeneous systems. Computers Fluids, 71,

196–207.

http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref1
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref1
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref1
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref2
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref3
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref3
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref3
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref4
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref4
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref4
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref5
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref5
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref6
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref7
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref7
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref7
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref8
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref9
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref9
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref10
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref10
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref10
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref11
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref11
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref11
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref12
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref12
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref12
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref12
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref12
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref12
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref12
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref13
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref13
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref14
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref14
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref14
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref15
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref15
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref15
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref16
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref16
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref17
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref17
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref17
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref18
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref18
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref19
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref19
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref20
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref20
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref21
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref21
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref21
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref22
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref22
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref22
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref23
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref23
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref23
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref24
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref24
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref24
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref25
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref25
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref25
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref26
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref26
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref27
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref27
http://refhub.elsevier.com/S0021-8502(16)30001-5/sbref27

	Predictions on dynamic evolution of compositional mixing degree in two-component aggregation
	Introduction
	Methodology
	Results
	χ(t)/χ0 for Constant coagulation and Linear coagulation
	Screening the relevant parameters for χ(t)/χ0 in Brownian coagulation
	χ(t)/χ0 as function of α and β: composition-independent case (γequal1) in the free molecular regime
	χ(t)/χ0 as function of α and β: in the continuum regime
	χ(t)/χ0 as function of α and β: in the transition regime A and B

	Discussion
	Conclusions
	Acknowledgments
	References




