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The sintering of agglomerates under high temperature determines the diameter and
morphology of particles. Accurate sintering model is essential to the process simulation
for the particle dynamics. A method of combining population balance modeling and
inverse problem methodology was applied in sintering simulation process to investigate
relationship between effective kinetic parameters in the characteristic sintering time
model, i.e., two dynamic parameters (the pre-exponential factor A and the apparent
activation energy E). The polydisperse primary particle (PP) model was introduced to
consider the inhomogeneous structure in agglomerates. Two inverse problem methodol-
ogies, tabulation method and response surface method, were employed by fitting
simulation results to experimental measurements. A contour map about the difference
between simulation results and experimental measurements as a function of various
parameter sets was obtained. Optimal values were obtained when the difference is small.
A linear relationship between the two uncertain kinetic parameters was identified, which
is similar to the kinetic compensation effect in the Arrhenius equation for reaction rate.
The linear relationship holds true for the sintering of both TiO2 and SiO2 agglomerates at
least, which are dominated by the surface diffusion mechanism and the viscous flow
transport mechanism, individually.

& 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Nanoparticle synthesis via aerosol route has recently attracted growing interests from the scientific and industrial
communities because it can produce high-purity nanoparticles with specially tailored chemical and physical property, e.g.,
hybrid component and high specific surface area (SSA), which can be used to produce ceramics, catalysts, electric and optical
materials (Seto, Hirota, Fujimoto, Shimada, & Okuyama, 1997). With respect to the events involved in the synthesis process
(e.g., nucleation, condensation, coagulation, sintering), coagulation and sintering strongly influence the size and
morphology of nanoparticles. In the aerosol processes (Nakaso et al., 2001), highly concentrated nanosized nuclei grown
from gas monomers by nucleation and surface reaction undergo rapid Brownian agglomeration. At a high temperature, the
resultant nanoparticles may fully coalesce into dense spheres almost instantaneously, as the agglomeration rate is far
smaller than the sintering rate. As the aerosol reactor cools down, the sintering rate may be far smaller than the
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Nomenclature

a surface area of particle (m2)
aa,k surface area of agglomerate particle at the kth

bin (m2)
afinal surface area of completely fused spherical

particle (m2)
app surface area of primary particle (m2)
A pre-exponential factor
dag geometric mean mobility equivalent diameter

of agglomerate (m)
dam mobility equivalent diameter of agglomerate (m)
dm,exp mobility equivalent diameter of agglomerate

from experimental measurement (m)
dm,sim mobility equivalent diameter of agglomerate

from simulation (m)
dp particle diameter (m)
dpp primary particle diameter (m)
dppg geometric mean diameter of primary particle (m)
dppg,exp geometric mean diameter of primary particle

from experimental measurement (m)
dppg,sim geometric mean diameter of primary particle

from simulation (m)
E activation energy (J mol�1)
k index of volume bin
l index of surface area bin
L distance from the inlet of furnace (m)

na agglomerate size distribution function
(m�3 m�3)

Na number concentration of agglomerate (m�3)
npp primary particle size distribution function of

an agglomerate (m�3 m�3)
Npp primary particle number concentration of an

agglomerate (m�3)
Ns,pp volume bin number of primary particle
R gas constant, 8.314 J mol�1 K�1

t time (s)
T temperature (1C)
T0 ambient temperature, temperature at furnace

entrance (1C)
Tf furnace temperature (1C)
va,k volume of agglomerate particle at the kth bin

(m3)
vpp volume of primary particle (m3)
y objection function defined in Eq. (9) (m2)

Greek symbols

σag geometric standard deviation of agglomerate
σppg geometric standard deviation of primary

particle
δ symbol for relative error
τs characteristic sintering time (s)
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agglomeration rate, leading to fractal-like agglomerates consisting of a large number of primary particles (PPs). The sintering
events involved directly determine the morphology and size of particle product. However, the sintering kinetics is still under
study (Kirchhof, Schmid, & Peukert, 2004).

The sintering process is usually described by the evolution of surface area which is found to approach its final value
exponentially (Koch & Friedlander, 1990). Many researchers had studied the sintering dynamics by experiments or
simulation. Seto, Shimada, and Okuyama (1995) used the two-dimensional sectional method of population balance
modeling to simulate the sintering process of fractal agglomerates (TiO2 and SiO2) in an aerosol reactor where only sintering
occurs. They found that primary particles coalesce at temperatures that are 50–100% of the bulk melting points of the
corresponding particle materials. A similar reactor system built by Kirchhof, Forster, Schmid, and Peukert (2012) was
employed to obtain detailed experimental measurements with sufficient heating and cooling times at the inlet and outlet.
Yang and Biswas (1997) proposed a new parameter set, i.e. pre-exponential factor A and apparent activation energy E for
TiO2 nanoparticles, using the in situ light scattering data. Tsantilis, Briesen, and Pratsinis (2001) proposed a new
characteristic sintering time model for silica particle by extending the particle size dependence of the melting point of
metals to the sintering model. Simulations using the new characteristic time model were carried out for a variety of
conditions with good agreement between the experiments and the simulation results except at larger temperatures. Based
on their sintering equation form, Shekar et al. (2012) combined a kinetic model with the response surface method to
identify effective model parameters for silica nanoparticles by fitting the model to the experimental measurements. Buesser,
Grohn, and Pratsinis (2011) used molecular dynamics (MD) simulations to study the sintering rate and obtained a new
characteristic sintering time model of TiO2 nanoparticles, which was thought to be effective especially when the diameter of
primary particles is small.

In fact, up to now researches mainly focused on identifying the effective sintering parameter sets (A, E) in certain
experimental cases which even cannot be regarded as being universal (Park & Rogak, 2003). Several differing sintering
parameter sets were proposed (Ehrman, Friedlander, & Zachariah, 1998; Kobata, Kusakabe, & Morooka, 1991; Xiong, Kamal
Akhtar, & Pratsinis, 1993; Yang & Biswas, 1997). Johannessen, Pratsinis, and Livbjerg (2001) also proposed different apparent
activation energy for TiO2 in a diffusion flame reactor with temperature closer to 2000 K. They attributed the considerable
difference to different reactors. They proposed that various apparent activation energy levels corresponding to different
experimental conditions should exist because of the phase transformations from amorphous to anatase and rutile. Even
though parameter sets from different researches vary greatly, but still can be successfully applied to simulate specific
sintering processes of nanoparticles. This fact makes us wonder if there exists a relationship between A and E, which implies
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variable parameter combinations of A and E can be used for simulating for particle sintering. From the mathematic form of
characteristic sintering time equation (an Arrhenius form), the relation is extremely possible. Panigrahi, Godkhindi, Das,
Mukunda, and Ramakrishnan (2005) found that different apparent activation energies exist due to the phase transformation
of micrometric titanium power in the sintering process, which provides evidence for variable apparent activation energy in
sintering process. Even though a large variation of apparent activation energy has been reported, the relationship between
the apparent activation energy and pre-exponential factor has not been studied yet. Meanwhile it is not difficult to find that
the characteristic sintering time equation has an Arrhenius form. This relation between pre-exponential factor and
activation energy has widely been discussed in other fields, e.g., for the Arrhenius form, kinetic compensation effect
describing the linear relationship between A and E is said to occur for a family of related chemical process, notably
heterogeneous catalysis. Whether this compensation effect exists in the characteristic sintering time equation needs to be
determined to have a better understanding of the sintering model. This paper focused on proving there is similar kinetic
compensation effect in the sintering processes of TiO2 and SiO2 nanoparticles, and population balance modeling is coupled
to simulate the size evolution of particle population. Based on the sintering model, population balance modeling can be
employed to simulate the evolution of particles due to sintering process under high temperature. The advantage of
population balance modeling lies in their simplicity (Xu, Zhao, & Zheng, 2015; Zhao, Kruis, & Zheng, 2010; Zhao & Zheng,
2009). Furthermore, the discrete nature of the particles used to represent the system is very useful for multivariate
population balances, i.e., containing other particle properties than particle size alone (Hao, Zhao, Xu, & Zheng, 2013; Xu,
Zhao, & Zheng, 2014).

In this paper the uncertain kinetic parameters in the classical characteristic sintering time equation of TiO2 and SiO2

nanoparticles were identified to examine if the compensation effect exists or not. By minimizing the difference between
experimental measurements and simulation results using various parameter sets based on inverse problem methodology,
we can determine appropriate parameter sets for simulating the sintering process. In details, the experiments for TiO2 and
SiO2 from Seto et al. (1997) were adopted, and population balance modeling (PBM) was employed to simulate the sintering
process. The population balance equations (PBE) for the mass and number of primary particles (PPs) were constructed to
obtain the evolution of size distribution of primary particles within agglomerates. The polydispersity of primary particles in
agglomerates (Heien & Pratsinis, 2007) was considered. Inverse problem methods were coupled to identify the effective
parameters in the characteristic sintering time equation (the pre-exponential factor A and the apparent activation energy E)
by fitting simulation results to experimental measurements. Detailed contour map describing the location of appropriate
parameter sets was obtained.
2. Population balance modeling for sintering

2.1. The experiments and sintering model

In the nanoparticle synthesis via gas-to-particle, sintering and agglomeration are two key mechanisms that affect the
size and morphology of particles. Seto et al. (1997) studied the sintering dynamics of polydispersed nanometer-sized
agglomerates in a preparation system consisting of two furnaces. The first furnace is for agglomerates generation, and the
second is for sintering where agglomerates concentration is low enough to make agglomeration negligible. The second
furnace is 1.5 m long with a set-point temperature maintained between 0.45 m and 0.75 m, the inner diameter is 13 mm.
The flow rate is 2 l/min. Equation (1) was used as the temperature history of agglomerates where L1¼0.2 m, L2¼0.45 m,
L3¼0.75 m, and L4¼1.5 m. The nanoparticles were considered to be fully entrained by the gas stream.

TðLÞ ¼ T0; LrL1;

TðLÞ ¼ T f �T0
L2 �L1

ðL�L1ÞþT0; L1rLrL2;

TðLÞ ¼ T f ; L2rLrL3;

TðLÞ ¼ T f exp � ln T0
T f

� �
L� L3
L3 �L4

h i
; L3rLrL4;

8>>>>><
>>>>>:

ð1Þ

where T0 is the ambient temperature (298.15 K), Tf is the set temperature of the reactor, T(L) is the temperature at distance L
from the inlet.

Sintering is characterized by the reduction rate of surface area, da/dt (a is surface area of agglomerate and t is sintering
time), approximately described by the following equation (Koch & Friedlander, 1990):

da
dt

¼ �a�afinal
τs

: ð2Þ

For TiO2, the characteristic sintering time τs based on the surface diffusion model has the general formula as (Kobata
et al., 1991; Xiong et al., 1993; Yang & Biswas, 1997):

τs;TiO2
¼ Ad4pTexp

E
RT

� �
: ð3Þ
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For SiO2, the classic sintering time model for SiO2 based on the viscous flow model was shown below (Xiong et al., 1993;
Ehrman et al., 1998):

τs;SiO2
¼ Adpexp

E
RT

� �
: ð4Þ

A is the pre-exponential factor (s m�4 K�1), R is the gas constant (8.314 J mol�1 K�1) and E is the apparent activation
energy (kJ/mol), dp is the diameter of particles. The parameter set (A, E/R) for TiO2 has been reported from different sources,
such as (7.44�1016, 31,032) from Kobata et al. (1991), (1.67�1016, 31,090) from Yang and Biswas (1997) and (8.3�1024,
30,190) from Xiong et al. (1993). Molecular modeling (Buesser et al., 2011) was employed to deduce effective form of the
sintering equation for TiO2 nanoparticles. For SiO2, (6.3�10�13, 82,993) was proposed by Xiong et al. (1993), (6.3�10�8,
61,000) was proposed by Ehrman et al. (1998). Tsantilis et al. (2001) introduced dp, min into the similar equation for SiO2 to
modify apparent activation energy E especially in the region where dp is small. Based on the new form, Shekar et al. (2012)
used inverse methodology (response surface method) to estimate the appropriate sintering parameters.
2.2. Population balance modeling for the sintering

Based on the experiment and sintering model describing the sintering process of particle, the particle-resolved PBM was
employed here to simulate the sintering process of particle population. PBM is a powerful tool for general simulation, which
has been applied by many groups (Hao et al., 2013; Kostoglou & Konstandopoulos, 2001; Kostoglou et al., 2006; Mukherjee,
Sonwane, & Zachariah, 2003; Rosner & Yu, 2001; Tandon & Rosner, 1999) to agglomeration or sintering. The PBM is capable
of directly describing the dynamic evolution of internal variables (e.g., size and surface area) of each simulation particle (it
represents a certain number of real particles having similar state with the simulation particle) (Zhao & Zheng, 2006, 2008,
2013). For the sintering, polydispersed primary particle (PP) model (Heine & Pratsinis, 2007), considering internal
inhomogeneous structure within agglomerates, was coupled here to describe the evolution of the inhomogeneous structure
of primary particles in agglomerates.

According to the experimental measurements (Seto et al., 1997), the size distribution at the entrance of the furnace
followed a lognormal distribution as

naðdamÞ ¼
Naffiffiffiffiffiffi

2π
p

ln σag
exp � ln2ðdam=dagÞ

2ln2σag

" #
1

dam
; ð5Þ

where na(dam)ddam means the number concentration in the diameter range dam–damþddam; dag and σag are the geometric
mean diameter and geometric standard deviation. At the inlet, dag¼91 nm, σag¼1.5, the number density Na is 1013 m�3. For
SiO2, dag¼66 nm, σag¼1.53. Primary particles in agglomerates were assumed to follow another lognormal distribution as

nppðdppÞ ¼
Nppffiffiffiffiffiffi

2π
p

ln σppg
exp � ln2ðdpp=dppgÞ

2ln2σppg

" #
1
dpp

; ð6Þ

where npp(dpp)ddpp means the number concentration of primary particles in the diameter range dpp–dppþddpp; dppg and
σppg are the geometric mean diameter and geometric standard deviation. At the inlet, dppg¼3.8 nm, σppg¼2.06. For SiO2,
dag¼7.5 nm, σag¼1.47. It was noted that the experimental data from Seto et al. (1997) is size-classified and is regarded as
absolutely right in this study.

The PBE for the mass and the number of primary particle were constructed to obtain the evolution of size distribution of
primary particles within agglomerates. Polydispersity of agglomerate was considered in the work, which was thought to be
closer to the actual agglomerates as shown in Fig. 1.

The polydispersed PP distribution within an agglomerate k with volume va,k and surface area aa,k was discretized into
Ns,pp bins, resulting in the following conservation relations:

va;k ¼
XNs;pp

l ¼ 1

Npp;k;lvpp;k;l
� �

;

aa;k ¼
XNs;pp

l ¼ 1

Npp;k;lapp;k;l
� �

;

8>>>>>><
>>>>>>:

ð7Þ

where the lth bin is with representative volume vpp,k,l, area app,k,l and primary particle number Npp,k,l. It was a set rule that
the sintering process would not change the scope of PP diameter within the agglomerate k ranging from dpp,k,min to dpp,k,max,
but alter the number of PPs in each bin (i.e., changing the size distribution). For the agglomerate k, dpp;k; min ¼ d2ppg;k=dpp;k; max;

dpp;k; max ¼ ðafinal;k=πÞ1=2 ¼ ð6va;k=πÞ1=3. The population balance equation of Npp,k,l in each bin was built as follows (Heine &



Fig. 1. Description for sintering of agglomerates and polydispersed primary particles.
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Pratsinis, 2007):

dnpp;k;l

dt ¼ dnpp;k;l
dt

� �
loss

þðdnpp;k;l

dt Þgain;
dnpp;k;l

dt

� �
gain

¼ �vpp;k;l� 1
vpp;k;l

dnpp;k;l� 1

dt

� �
loss

;

dnpp;k;l
dt

� �
loss

¼ �npp;k;l
τs;l

app;k;l �ðafinal;k=nmono
pp;k;l Þ

app;k;l �ðapp;k;lþ 1vpp;k;l=vpp;k;lþ 1Þ;

8>>>>><
>>>>>:

ð8Þ

where afinal,k is the surface area of the sphere after complete coalescence of k, τs,l is the characteristic sintering time
dependent of the lth PP size, nmono

pp;k;l ¼ va;k=vpp;k;l. Solving above equations can help us obtain the time evolution of
agglomerates and its internal primary particles size distributions.

In our previous work (Hao et al., 2013), this polydispersed model was employed to simulate the synthesis process of TiO2

via gas-phase method. The simulation results for the synthesis process involving nucleation, agglomeration and sintering
agree well with the experimental measurements. This polydispersed model was used here again to simulate the individual
sintering process. In the experiment (Seto et al., 1997), a two-stage plug reactor was used, in which coagulation and
nucleation was thought as the dominant events in the first reactor and sintering is the dominant events in the second
reactor. The number concentration of particles in the second reactor is less than 1013/m3 making coagulation negligible,
which was demonstrated by Seto et al. (1997). Their experimental data suggested mobility diameter of agglomerates
remains stable if the temperature of the second reactor is below 800 1C, which means sintering is the only mechanism
dominating the size and surface area change of particles. Even if the coagulation was considered in the second reactor, the
effect can be neglected.

The PBM was verified by comparing the simulation result with that from the modeling of Shekar et al. (2012), and
characteristic sintering time from Shekar et al. (2012) was also employed in our simulation process. Both experimental
conditions were from Seto et al. (1997), including the temperature history of particle population, the residence time at
different temperature time and component concentration at the inlet. It may be worth noting that the dynamic events
(nucleation, coagulation, sintering) in two reactors were simulated by Shekar et al. (2012), and collision diameter of
agglomerates was employed in the sintering process. But in our work, the size distribution at the outlet of the first reactor
was considered as direct input, and mobility diameter of agglomerates (surface area equivalent diameter) was employed to
characterize the evolution. We also compared our simulation results of the average diameter of primary particles with
experimental data to validate our PBM model. It was found that PBM in this work is capable of describing the evolution of
agglomerates in the sintering process, as shown in Fig. 2. The evolution of size distribution of agglomerates and primary
particles in the second reactor with different set temperatures also agreed better with the experimental measurements, as
shown in Fig. 3.

3. Inverse problem methodology

Response surface method (RSM) and tabulation method (TM) were employed here as the inverse problem methodologies
(or optimization algorithm) to identify the effective dynamic parameter sets. Tabulation method was used by Mosbach,
Aldawood, and Kraft (2008) to evaluate a detailed chemistry homogeneous charge compression ignition (HCCI) engine
model. RSM was employed by Braumann, Kraft, and Mort (2010) to identify unknown parameters in granulation models.
Shekar et al. (2012) combined RSM with a kinetic model to identify effective characteristic sintering model.

The basic idea of RSM is to fit a model, usually by a simple algebraic expression such as a second-order polynomial, to
data. A surrogate but accurate enough local model is constructed to replace the actual response of the system to uncertain



Fig. 2. Comparison of average primary particle diameter from the model proposed by Shekar et al. (2012) and the population balance modelling in this
work (using same sintering parameters proposed by Shekar et al., 2012) at different reactor temperature. The experiment was proposed by Seto et al.
(1997).

Fig. 3. Evolution of size distribution of agglomerates and primary particles. Sintering model parameters were from Kobata et al. (1991). The experimental
measurements and monodisperse model were given by Seto et al. (1997).
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parameter sets. Usually experiment design is coupled to reduce the experiment times needed to construct the response
surface. Under the condition of limited data we used, the surrogate model should be constructed in a finite narrow
parameter space around hot spots to ensure high accuracy. This is accomplished either by an appropriate initial set based on
empirical value or by some search methods, such as using the Halton sequence (Braumann, Man, & Kraft, 2011) to search hot
spots randomly first. RSM is a more accurate tool compared with TM in most cases, but at the disadvantage that it might not
have a unique solution. TM stores any obtained results to deduce the response at the point that we are interested within the
region by fitting process, which means that any response in a relatively large region can be obtained. The accuracy of TM
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largely depends on the number of data it stores and uses. As a whole, both RSM and TM can be regarded as effective fitting
processes which can be used to identify effective sintering model parameters.

In our case, PBM was built to simulate the process and to obtain the simulation response (e.g., the size of agglomerates
and primary particles) within the parameter space. Optimal parameter sets were identified when the simulation response
was closest to the known experimental measurements. Here, the parameter space is (A, E/R) and the simulation response is
(dm, dppg). The objection function y was constructed as following to characterize the difference between simulation results
and experimental measurements:

y¼
X

T f ¼ 900;1000;12003C

dm;simðA; E=R; T f Þ�dm;exp
� �2þðdppg;simðA; E=R; T f Þ�dppg;expÞ2
h i

ð9Þ

Generally speaking, both the method is capable of identifying the optimal parameter sets (which are the parameters
making y at minimum). The difference is that from RSM some certain parameter sets can be obtained, while from TM the
relation between y and parameter sets can be drawn.

4. Results and discussions

In this work, random distributed data points were used in TM first to draw a contour map of the difference y at
parameters sets (ln(A), E/R) for TiO2 and SiO2 as shown in Fig. 4. The accuracy of the TM method depends mainly on the
amount of data used. The amount of data (i.e., 450 random distributed points for TiO2 in RSM) used was regarded as enough.

A V-type valley was presented for both TiO2 and SiO2. The corresponding parameter sets seemed to be on a line. Then we
tried to use RSM method to identify corresponding parameter sets making y minimum. The first step of RSM was to use the
Hilton sequence generating random points to find the hot spot (which means the possible effective parameter sets) and then a
Fig. 4. Obtained value y (the difference between simulation results and the experiments) at parameter sets (ln(A), E/R) in the characteristic sintering time
of (a) TiO2 and (b) SiO2.

Fig. 5. Change in the average agglomerate mobility diameter and primary particle diameter for TiO2 with the reactor temperature: (a) experimental
measurements and simulation results were given by Seto et al. (1997), (b) sintering parameters were from the tabulation method and (c) sintering
parameters were from the response surface method.



Fig. 6. Change in the average agglomerate mobility diameter and primary particle diameter for SiO2 with the reactor temperature: (a) experimental
measurements and simulation results were given by Seto et al. (1997) and (b) sintering parameters were from the response surface method.

Table 1
The relative errors using various parameter sets for TiO2.

Temperature (1C) 600 900 1000 1200 1500

δyo0.10
δdm,sim o0.012 o0.019 o0.037 o0.058 o0.066
δdppg,sim o0.056 o0.063 o0.068 o0.074 o0.091
δdm o0.045 o0.153 o0.114 o0.156 o0.096
δdppg o0.171 — o0.316 o0.103 o0.029

Seto et al., 1997
δdm 0.072 0.249 0.237 0.094 0.157
δdppg 0.348 — 0.725 0.134 0.024

Kobata et al., 1991
δdm 0.042 0.159 0.115 0.098 0.097
δdppg 0.139 — 0.981 0.262 0.050

Table 2
The relative errors using various parameter sets for SiO2.

Temperature (1C) 900 1200 1350 1500 1650 1750

δyo0.10
δdm,sim o0.0034 o0.0048 o0.0062 o0.0067 o0.0130 o0.0083
δdppg,sim o0.0027 o0.0024 o0.0039 o0.0054 o0.0061 o0.0072
δdm o0.0158 o0.0172 o0.0139 o0.0213 o0.0544 o0.0516
δdppg o0.2620 o0.4093 o0.4415 o0.5088 o0.1407 o0.3119

Seto et al., 1997
δdm 0.0089 0.0093 0.0204 0.0494 0.1891 0.1738
δdppg 0.0048 0.2071 0.1315 0.1010 0.0822 0.0349

Shekar et al., 2012
δdm 0.0449 0.0037 0.0801 0.1068 0.0767 0.1356
δdppg 0.0085 0.0676 0.3488 0.3689 0.2105 0.2323

Xiong et al., 1993
δdm 0.0076 0.0057 0.0018 0.0037 0.2344 0.2155
δdppg 0.2230 0.3805 0.3457 0.3976 0.0870 0.2139

Ehrman et al., 1998
δdm 0.0076 0.0056 0.0040 0.0699 0.2326 0.2151
δdppg 0.2226 0.3811 0.3370 0.2891 0.0948 0.2138

X. Hao et al. / Journal of Aerosol Science 82 (2015) 1–128
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response surface was constructed around this hot spot. In our case, for TiO2 350 random points were generated in the range: ln
(A):20–50, E/R:10,000–60,000 and 100 extra special points located in the bottom of the valley to ensure accuracy (these points were
then stored in TM) were used to find the hot spot. Once the response surface was constructed, a simple algebraic expression was
obtained. In this case, the minimum value of y for TiO2 was 41.30, the corresponding optimal parameter set was (32.42, 42,343).
Given the quadratic term of y, there was little difference between this optimal point from RSM and the points on the line which all
made y range between 41 and 60. It was meant that the points on the line from TM can also be regarded as the optimal points.
Three discretely distributed points on this line, ln(A)¼28.48, 31.31 and 35.60, were applied in the simulation to verify this
assumption, as shown in Fig. 5. Compared with the parameter set from Kobata et al. (1991), the optimal points both from TM or
RSM leads to same results and were more effective in this case. Same phenomenon can be found for SiO2, optimal parameter set
was (�33.26, 92,503.4), as shown in Fig. 6. The limit for the validity of the new parameter sets was that the particle size should be
larger than approximately 2 nm. The model broke down if the particle size went down to a few nanometers due to the high
internal pressure of smaller particles (Koparde & Cummings, 2005).

In addition, the relative errors using various parameter sets were evaluated according to

δy¼ y�yopt
		 		=yopt;

δdm;sim ¼ dm;sim�doptm;sim

			 			=doptm;sim;

δdppg;sim ¼ dppg;sim�doptppg;sim

			 			=doptppg;sim;

δdm ¼ dm;sim�dm;exp
		 		=dm;exp;

δdppg ¼ dppg;sim�dppg;exp
		 		=dppg;exp:

8>>>>>>>>><
>>>>>>>>>:

ð10Þ
Fig. 7. The relationship between ln(A) and E/R of different expressions for TiO2 and SiO2.

Fig. 8. ln(k) against 1/T using different characteristic sintering time models for SiO2 (dp¼10 nm).
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where yopt is the minimum objection function with the optimal parameters, doptm;sim , and doptppg;sim are the simulation results
using the optimal parameters. While we set δy below 0.10, the relative errors are calculated over several different
temperature points. Obviously, the relative errors of our simulation results are basically lower than that of pre-existing
simulation in a wide range of objection function y (Tables 1 and 2). The optimized simulation results show the best
agreement with the experimental measurements as shown in Figs. 5 and 6.

Just as we noted at the beginning of this paper, strongly different characteristic sintering times can be found from
different sources. Based on several optimal parameter sets identified in this work and parameter sets reported before, the
hypothesis that the compensation effect in the characteristic sintering time equation may exist was verified for both TiO2

and SiO2 as shown in Fig. 7.
As known, sintering is driven by the deviation of the free energy of the irregular agglomerate from that of the compact

particle. The accuracy of the widely used sintering model largely depends on how effective the characteristic sintering time
equation is used. Even these parameter sets varies greatly, they can still describe the sintering process. The reason for this
phenomenon has been revealed: there exists a linear relationship between two effective parameters, which can be seen in
Fig. 7.

This linear relationship, exists both in TiO2 case and SiO2 case, is not a unique phenomenon in this sintering of
nanoparticles but similar to the so-called kinetic compensation effect, found in the Arrhenius equation for the thermal
decomposition of some solid compounds which characterizes the linear relationship between apparent activation energy E
and pro-exponential factor function ln(A), i.e., ln(A)¼aEþb. This kinetic compensation effect was related to, but distinct
from, the so-called isokinetic relationship concept (Barrie, 2012a, 2012b), which considered that different ln(k)�1/T lines
caused by various experimental conditions will have the intersection point (Tiso, kiso), where k represents the reaction rate.
In our case, k is the characteristic sintering time. If the isokinetic relationship is obeyed exactly, then it turns out that the
kinetic compensation effect must also be obeyed. In our case, the isokinetic relationship was exhibited, as shown in Fig. 8,
which demonstrates that the compensation effect does exist. Factually, the sintering (or thermal restructuring) is an
activated process, and it was also found that the rate coefficient for restructuring of silver agglomerates follows an Arrhenius
form with a characteristic energy of restructuring (Weber & Friedlander, 1997).

We emphasized here the activation energy in the original manuscript should be “apparent activation energy”. As known,
for the elementary reactions the activation energy represents the difference between the average energy of the activated
molecules and that of all the molecules. However, for the global reactions the so-called activation energy is empirical and
apparent, which usually depends on the temperature. In this work, the conclusion that different apparent activation energy
should be used for different experimental conditions was based on the fact that differing apparent activation energy has
been reported from different experiments. Johannessen et al. (2001) pointed out that a plausible reason is the difference of
reactors and procedures of obtaining the characteristic sintering time. The temperature and heat rate of the reactors in
different experiments varied in a large range. For example, Kobata et al. (1991) measured the sintering rate with
temperature between 1123 K and 1473 K, and Xiong et al. (1993) studied furnace temperature from 1300 K to 1700 K. As
for other cases, the temperature can be as high as 2000 K. Johannessen et al. (2001) took the view that phase
transformations during the process make it unlikely that the sintering can be described by an expression based on single
apparent activation energy. It is known that TiO2 nanoparticles produced via gas-phase method leads to amorphous, anatase
and rutile TiO2. The phase transformation is associated with the sintering process. In the preparation process, anatase TiO2

arises firstly at relatively low temperature and then transforms to rutile at higher temperature. The transformation rate of
anatase to rutile (A–R transformation) depends strongly on the conditions, under which the particles were produced
(Kobata et al., 1991; Ahonen et al., 2001). The transition was associated with Arrhenius-type kinetic reaction with varied
apparent activation energy which was reported to depend on the size of particles and temperature (Wang, Mishra, Zhao, &
Huang, 2013; Zhang & Banfield, 2000). Sintering is another process associated and competed with the A–R transformation
(Ahonen et al., 2001; Wang et al., 2013). The increased mobility of the atoms during the A–R transformation enhances the
sintering rate (Kumar et al., 1992). It was concluded that sintering rate is associated with the phase transformation which
depends on the preparation conditions.

This linear relationship between two most important uncertain dynamic parameters involved in the characteristic
sintering time model can help us on identification of effective and universal sintering model, but also implies that it is not so
important to identify designated effective parameters sets (A, E) for the characteristic sintering time model. The variable
apparent activation energy level implies that differing parameter sets may be available. By the relationship identified in this
work, the pre-exponential factor can be easily obtained. The work left may be studying the characteristic of variability of
apparent activation energy level in different phase transformation processes.

5. Conclusions

The sintering of agglomerates under high temperature determines their surface area and internal inhomogeneous
structure. The population balance equations for the mass and number of primary particles were constructed to obtain the
evolution of size distribution of primary particles within agglomerates. The polydisperse primary particles (PP) model was
employed here, which has advantage in numerical precision with respect to the monodisperse PP model. Aiming to the
sintering experiment reported by Seto et al. (1997), we proved that there exists a linear relationship between the effective
parameter sets for the sintering of nanoparticles using the tabulation-based inverse problem method to minimize the
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difference between experimental measurements and PBM numerical results. The kinetic compensation effect in the
characteristic sintering time which is in the Arrhenius formwas found. It describes a linear relationship between ln(A) and E.
This linear relationship is first proposed for sintering process of nanoparticles and correlated differing sintering model
parameters reported before, but also implies that it was not essential to specify single apparent activation energy to
characterize sintering process which was associated with the environment-depended phase transformation.
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