Vol.27 No.26 Sep. 2007 ©2007 Chin.Soc.for Elec.Eng.

文章编号:0258-8013(2007)26-0065-07

中图分类号:TK123 文献标识码:A

学科分类号:470·10

基于热经济学结构理论的电站热力系统全局优化

熊杰,张超,赵海波,郑楚光

(华中科技大学煤燃烧国家重点实验室,湖北省 武汉市 430074)

Global Optimization of Thermal Power System Based on Structure Theory of Thermoeconomics

XIONG Jie, ZHANG Chao, ZHAO Hai-bo, ZHENG Chu-guang

(State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, Hubei Province, China)

ABSTRACT: Based on the structure theory of thermoeconomics, the thermoeconomic cost model and the global optimization model were established to globally optimize a 300MW pulverized coal fired power plant. The Sequential Quadratic Programming (SQP) mathematical arithmetic was used to solve the optimization models of complex energy systems, in which the global optimal solutions was obtained by balancing the thermal efficiency of system and the investment cost of each device. The results show that the thermoeconomic optimization will decrease 4 percent of the total investment cost of the energy system. And, the effect of the variation of the external environment parameters and the independent variables of system on the optimal solutions of the system was evaluated by using the "sensitivity analysis methodology". The results indicate that the external economic parameters influence the objective function and the optimal solutions more effectively than the external thermal parameters. And then, the results of the sensitivity analysis of the independent variables near the optimal solutions show that the optimal solutions obtained insure the energy system exhibits the globally minimum total annual cost.

KEY WORDS: thermoeconomics; structure theory; thermal power system; exergetic cost; sequential quadratic programming; global optimization

摘要:以某燃煤电厂 300MW 燃煤机组为例,利用热经济学 结构理论建立了系统的热经济学成本模型和全局优化模型, 并以序列二次规划法(SQP)作为优化模型的求解算法,通过 权衡系统的热力学效率以及系统各设备的投资成本,获得了 系统的最优解,经过热经济学优化之后系统总投资成本降低 了4个百分点。利用系统灵敏度的分析方法,研究了外部环

Project Supported by Special Fund of the National Priority Basic Research of China (2006CB705807).

境参数及系统自变量变化对系统最优解的影响。通过分析发现,外部经济性参数相比较于物理参数对系统目标函数和最优解的影响更大;由系统自变量在最优解附近的灵敏度分析可以看出,文中所获得的最优解能够确保系统具有全局最小的年度化总成本。

关键词:热经济学;结构理论;热力系统;烟成本;序列二 次规划法;全局优化

0 引言

能源资源的短缺、生态环境的日益恶化,使利 用传统能量优化方法所建立的以热力学(或技术)最 优为目标的能源系统已经无法满足当前能源和环 境状况。即使在传统的能量系统优化中引入经济和 环境等问题的优化,也无法做到真正意义上的优 化。这是由于传统的能量分析体系无法真正做到将 热力学和经济学进行"无缝融合",由此进行的优化 通常 2 个顺序相连的优化组成,即先热力学优化再 经济学优化,这种优化方式通常无法获得真正的全 局最优,从数学角度来看,这种"优化"只能称为 改进。而且,由于缺乏某种权衡,单纯使用基于热 力学第二定律的优化也无法获得某些重要参数的热 力学最优值,例如汽轮机等熵效率,温度比等^[1]。

热经济学优化方法正是针对传统热力学优化 方法的不足而建立的一种更为科学、全面的评价方 法。El-Sayed 和 Evans^[2]使用严格的微积分方法和基 于拉格朗日的分解优化方法,建立了一套完整的热 经济学优化体系,该体系在热经济学研究领域中产 生了重大影响。热经济学优化领域中很多重要的优 化方法(例如热经济学功能分析^[3]、工程功能分析^[4]、 结构理论^[5]等)都是 El-Sayed 和 Evans 的方法的某种 扩展。其中,热经济学结构理论逐步脱颖而出,提

基金项目:国家重点基础研究专项经费项目(2006CB705807)。

出了一种基于线性///模型的通用数学形式,将平均 成本和边际成本的计算统一到一个通用的模型上, 并且包含了以上所有热经济学方法。

本文在前阶段工作^[11-13,15]的基础上,以 300MW 燃煤机组为例,利用热经济学结构理论建立了系统 的热经济学模型和全局优化模型,并以序列二次规 划(SQP)法作为优化模型的求解算法,通过权衡系 统热力学效率及系统各设备投资成本,最终获得系 统最优解。

1 热经济学建模

本文以湖南某电厂N300-16.7/537/537-1型燃煤 机组作为研究对象,该系统流程图请参见文献[12]。

为了准确地描述每一个设备的生产功能,很多 学者使用燃料-产品^[15]的概念定义各设备的功能。 根据各设备在全局生产中的功能,将各设备输入输 出的实际物流通过组合或分解得到多个燃料流(F) 和一个产品流(P),由此可以将实际系统的物理流程 图转化为由燃料-产品所表示的生产结构^[6],该机组 的生产结构请参见文献[12]。

在生产结构的基础上,利用热经济学结构理论 可以建立该系统的特征方程和热经济学成本方程。 特征方程描述了系统内各组件之间的生产关系,表 达了系统中每一个组件的入口流(B_i)作为该组件内 部参数集 x_i 和所有组件输出流(B_j)的函数^[6]: $B_i=g_i$ ($B_1,...,B_j, x_i$)。通过使用一阶齐次方程的欧拉定理和 燃料—产品定义,上述特征方程可以转换为线性方 程组的形式(具体推导过程见文献[12,15-16]):

$$\begin{cases} P_i = \omega_i + \sum_{j=1}^n k_{ij} P_j \\ k_{ij} = \partial g_i / \partial B_j = B_{ij} / P_j \end{cases}$$
(1)

式中: P_i 为第 *i* 个组件的产品; ω_i 为第 *i* 个组件输

出到系统外界的最终产品;*k_{ij}*为技术产品系数(或单 位/佣耗),表示为了获得第*j*个组件的单位产品所需 的第*i*个组件的产品的部分;*B_{ij}*表示第*i*个组件的 产品作为第*j*个组件的燃料的部分。

在特征方程的基础上,可以建立热经济学成本 方程,成本方程通常有2类:平均成本的热经济学 方程和边际成本的热经济学方程。本文使用前者来 建立热经济学成本方程。在热经济学成本计算中, 需要将系统总的投资成本(*Z*),在经济寿命周期内, 等额折算为每年的偿还成本(*Z*_L),该成本称为等额 年度化分期偿还成本(Levelized cost,单位:\$/s)^[17]:

$$Z_L = \frac{\varphi f}{3600H} Z = \xi Z \tag{2}$$

式中: φ 为系统维护因子;H为系统年运行小时数; ξ 为分期偿还因子(1/s);f为年度化因子^[17-18]。

一旦确定了各设备的等额年度化分期偿还成本 *Z_{Li}*,就可以建立各设备的平均成本方程:

$$c_{\rm pi} = \sum_{j=1}^{n} c_{\rm F_{j}} \frac{F_{j}}{P_{i}} + \frac{Z_{L_{i}}}{P_{i}} = \sum_{j=1}^{n} c_{\rm F_{j}} k_{ji} + kZ_{i}$$
(3)

式中: c_{pi} 和 c_{Fi} 分别为设备产品和燃料的单位热经 济学成本(包含 B 烟 S 负熵、W 功 3 类),表达了 为获得单位产品燃用和燃料燃所需的现金单位数量 (kJ); $kZ_{i=Z_{Li}}/P_{i}$ 为单位产品的资本成本(kJ)。

本文所研究系统中主要设备的热经济学成本方 程及相应的投资成本方程如表1所示^[1,6-7,15,17]。表中 BOI 表示锅炉, SH 为过热器, RH 为再热器, FWH 为给水加热器, Turbine 包括 HP(高压缸)、IP(中压缸) 和 LP(低压缸), Pump 包括 CWP(循环水泵), FWP(给 水泵)和 CP(凝结水泵), CND 表示凝汽器, GEN 为 发电机。kBi 是单位产品火用 耗,kSi 是单位产品负 ^{^{$[12]}}消耗,<math>kW_i$ 是单位产品功耗。 c_F 为系统外部燃</sup></sup> 料资源的单位/拥价格。除了 kZ_{CND}=ξ(Z_{CND}+Z^P_{CWP})/ P_{CND} 外,其余设备 $kZ_i = \xi Z_i / P_i (i)$ 对应设备相应的编 号)。投资成本计算方程中参数说明(依次对应): P1 为主蒸汽出口压力, MPa; T_1 为主蒸汽出口温度, K; η 为锅炉/取效率, B 为锅炉产品/用, kW; f_{RH} 为 再热器投资成本占锅炉总投资成本的百分比(本文 取 0.12); O 为加热器换热量, kW; TTTD 为加热器 出口给水端差, ; $\Delta P_t \pi \Delta P_s$ 分别为管侧和壳侧压 力损失, MPa; 高压加热器 a=6, 低压加热器 a=4; W 为级组输出功率, kW; nT 为级组/r 放率, 高压 级组参考// m效率η_{Tr}=0.95,低压级组η_{Tr}=0.85;η_P 为泵的烟效率; B为泵的产品烟, kW; T_0 为环境温 度,K;V_w为管内冷却水流速,m/s;η为凝汽器效

-											
											-
=	± .	万/赤中+;	т	夕 66 + 5	67 X + + + + + + + + + + + + + + + + + +	· - + +	- <u></u> - 11	3 77. +O r	÷ 66 +л	ᄽᅏᆣᆛ	
7	夜日	糸 3 田土	岁论	备的热	经济学	助み	、力利	主反相り	业的投	分加イ	4月1日 4月1日 4月1日 4月1日 4月1日 4月1日 4月1日 4月1日

Tab. 1 Thermoeconomic cost equations and the related investment equations of the major devices in the system						
设备	编号	热经济学成本方程	投资成本计算方程			
B-SH	10	$c_{P,10} = kB_{10}c_F + kS_{10}c_{FS,10} + kZ_{10}$	$Z_{\rm BOI} = 740 \exp((10P_1 - 28)/150) [1 + 5\exp((T_1 - 866)/10.42)] [1 + ((0.45 - 0.405)/(0.45 - \eta))^7] B^{0.8}$			
RH	13	$c_{P,13} = kB_{13}c_F + kS_{13}c_{FS,13} + kZ_{13}$	$Z_{\text{B-SH}} = (1 - f_{\text{RH}}) Z_{\text{BOI}}, Z_{\text{RH}} = f_{\text{RH}} Z_{\text{BOI}}$			
FWH	1-4,7-9	$c_{\mathrm{P},i} = kB_i c_{\mathrm{FB},i} + kS_i c_{\mathrm{FS},i} + kZ_i$	$Z_i^{\rm H} = 0.02 \times 3.3 Q (1/(T_{\rm TTD} + a))^{0.1} (10\Delta P_{\rm t})^{-0.08} (10\Delta P_{\rm s})^{-0.04} \times 1000$			
Turbine	11,12,14-20	$c_{\mathrm{P},i} = kB_i c_{\mathrm{FB},i} + kS_i c_{\mathrm{FS},i} + kZ_i$	$Z_{j}^{\mathrm{T}} = 3000[1+5\exp((T_{1}-866)/10.42)][1+((1-\eta_{\mathrm{T}})/(1-\eta_{\mathrm{T}}))^{3}]W^{0.7}$			
Pump	6,23	$c_{\mathrm{P},i} = kB_i c_{\mathrm{FB},i} + kS_i c_{\mathrm{FS},i} + kZ_i$	$Z_i^{\rm P} = 378[1+((1-0.808)/(1-\eta_{\rm P}))^3]B^{0.71}$			
CND	22	$c_{P,22} = kB_{22}c_{FB,22} + kW_{22}c_{FW,22} + kZ_{22}$	$Z_{\text{CND}} = (1/T_0 \varepsilon) \{ 217[0.247 + (1/(3.24 V_w^{0.8}))] \ln(1/(1-\varepsilon)) + 138\} (1/(1-\eta))S \}$			
GEN	24	$c_{P,24} = kB_{24}c_{P,26} + kZ_{24}$	$Z_{\rm GEN} = 60 W^{0.95}$			

 GEN
 24
 $c_{P,24}=kB_{24}c_{P,26}+kZ_{24}$

 率其定义为 $T_0(S_{in}-S_{out})/(h_{in}-h_{out})$, ε 为热效力被定义

 为($T_{wo}-T_{wi}$)/($T_{in}-T_{wi}$), T_{wo} 和 T_{wi} 为冷却水出口和进口温度,; T_{in} 为凝汽器进口蒸汽温度,; S为凝汽器生产的负熵, kW; W为发电机功率, kW; 将各设备的热经济学成本方程进行联立求解,可以

2 热经济学全局优化模型

得到各设备产品的平均热经济学成本。

热经济学全局优化在全局角度建立系统的优 化模型(目标函数和约束方程),利用数学优化算法 直接对模型进行求解。

系统的优化范围选定为除凝汽器和发电机外的所有设备,包括锅炉、汽机各级组、水泵、给水加热器。系统自变量 x 选择为与各设备设计和运行 有关的特征变量(例如效率、端差、温度等)共计 21 个: $x=(\eta_{BOI}, \eta_{HP1}, \eta_{HP2}, \eta_{IP1}, \eta_{IP2}, \eta_{LP1}, \eta_{LP2}, \eta_{LP3}, \eta_{LP4}, \eta_{LP5}, \eta_{FWP}, \eta_{BFPT}, \eta_{CP}, T_{TTDFWH1-FWH7}, T_{SH})。$ $BFPT 表示给水泵小汽轮机。其中<math>\eta_{BOI}$ 为锅炉的热 力学效率,其它效率 η 均为各设备的等熵效率, $\eta=(h_{in}-h_{out})/(h_{in}-h'_{out})$, h_{in} 、 h_{out} 分别是汽轮机 机组的入口焓、实际出口焓、等熵状态下出口焓, T_{SH} 为锅炉主蒸汽(也就是过热蒸汽)和再热蒸汽的 温度, ,本文将这 2 个温度设定为同一值。这些 自变量的取值范围如表 2 所示。

在一定的物理环境和经济环境条件下,图1所 示系统的全局优化可以表达为:当在一定的经济环 境下(例如一定的年度化因子、系统维护因子等), 系统总的产品输出量一定(系统的净负荷一定),通 过调整系统的内部自变量 *x*(*y* 为应变量),使系统所 消耗的外部资源 *F* 和总投资 *Z* 最小,即最小化系统 的年度化总成本 *Γ*(\$/s),表示为如下的数学形式:

表 2 系统主要变量取值范围

Tab. 2	The	value	ranges	of the	major	variables
--------	-----	-------	--------	--------	-------	-----------

变量	加热器端差/	主蒸汽和再热 蒸汽温度/	汽机和泵的 效率	锅炉效率
范围	$-2.8 \le T_{\text{TTD}} \le 2.8$	$0 < T_{\rm SH} \leq 550$	$0 < \eta < 1$	$0 < \eta_{BOI} < 1$

Fig. 1 Schematic diagram of global optimization

$$\min_{x} \Gamma = \Gamma_{\mathrm{F}} + \Gamma_{Z} = \sum_{i=1}^{n} c_{\mathrm{F}} F_{i} + \xi \sum_{r=1}^{n} Z_{r}$$
(4)

目变量
$$\mathbf{x} = (x_1, x_2, ..., x_n)$$
服从士约束:

$$\begin{cases} h_j(\mathbf{x}, \mathbf{y}) = 0, \ j = 1, ..., J \\ g_k(\mathbf{x}, \mathbf{y}) \le 0, \ k = 1, ..., K \end{cases}$$
(5)

应变量 *y*=(*y*₁, *y*₂, ...,*y*₁)包括(除自变量外)各股流的温度、压力、流量、比焓等。目标函数中的外部燃料消耗和投资成本由以下 2 个函数确定:

$$\begin{cases} F_i = F_i(\mathbf{x}, \mathbf{y}), & i = 1, ..., e \\ Z_r = Z_r(\mathbf{x}, \mathbf{y}), & r = 1, ..., m \end{cases}$$
(6)

函数 $F_i(x, y)$ 为外部燃料消耗函数,对于本文所研究系统,仅消耗2股外部燃料(F_{10} 和 F_{13}), $F_i(x, y)$ 由燃料—产品模型确定。函数 $Z_r(x, y)$ 为各设备投资成本估算方程(表 1),表达了系统变量(x, y)与投资成本之间的关系。 $h_j(x, y)$ 为系统物理模型(包括质量平衡、能量平衡、设备特性方程等)的约束方程^[15], $g_k(x, y)$ 为考虑系统运行的安全性、稳定性等要求,人为设定的系统变量的取值范围,本文所研究系统主要变量限定情况如表2所示。

确定了系统的优化模型(包括目标函数及等式 和不等式约束方程)后,利用数学优化算法对该模型 进行直接寻优,能同时求解出系统自变量 *x* 的最优 解 *x**及相应的应变量 *y* 的值。

3 数学寻优算法

本文要进行的优化问题,其目标函数是非线性 的,自变量为连续型变量,并且带有大量的等式和 不等式约束,该类优化为带有约束的非线性优化问 题。SQP 算法在电力、能源、化工等过程系统中有 着广泛的应用,例如 Rodriguez-Toral 等人^[19]利用 SQP 优化了一个热电联产的发电厂,本文也采用 SQP 算法作为系统寻优的数学算法。

标准 SQP 算法的基本思想是:将目标函数 f(x) 引入等式的拉格朗日乘子向量礼、不等式的拉格朗 日乘子向量 μ 将目标函数转换为拉格朗日函数L(x, λ, μ)。本文采用 Spellucci^[20]提出的 SQP 改进算法, 该算法可以强化 SQP 的收敛速度并尽可能优化更 大维数、更多约束的非线性优化问题。

全局优化及结果分析 4

4.1 优化结果

系统外部物理和经济环境参数值如表 3 所 示^[7,17-18]。表 4 给出了优化前后变量值、系统总投 资成本和年度化成本的对比。表 5 给出了各设备产 品的单位热经济学成本 cp 的计算结果 ,以及优化前 后各设备投资成本对比,分析2表中的数据可以发 现,通过热经济学优化可以使系统总投资成本降低 4 个百分点(见表 4 最后一行)。各组件产品单位热 经济学成本以及投资成本的变化如图 2、3 所示。

图 3 优化前后各组件投资成本变化 Fig. 3 Variation of the investment cost of each component due to the optimization

	表3	系统优化的外部环境参数
Tab. 3	The	values of the external environment
pa	ramet	ers in the system optimization

物理工	经济环境		
初珪环境	燃料	投资	
机组净负荷	山动植业公共	维护因子 $arphi$ =1.06,年运	
$W_{\text{net}}=300\text{MW}$,	ットコロンパクキャルトイロ マークン10 ⁻⁶ 6パルト	行小时数 H=8000h ,年度	
环境温度 20	$c_{\rm F}=2 \times 10$ \$/KJ	化因子 f=18.2%	

1ab. 4	Results of the global o	pumization
变量	优化前 x ⁰	优化后 x [*]
$\eta_{ m BOI}$	0.91802	0.90496
$\eta_{ m HP1}$	0.82624	0.84407
$\eta_{ m HP2}$	0.90949	0.90204
$\eta_{ m IP1}$	0.90779	0.90163
$\eta_{ m IP2}$	0.93463	0.90414
$\eta_{ m LP1}$	0.89003	0.91710
$\eta_{ m LP2}$	0.91176	0.84340
$\eta_{ m LP3}$	0.93839	0.92082
$\eta_{ m LP4}$	0.90426	0.91187
$\eta_{ m LP5}$	0.78556	0.81016
$\eta_{ m FWP}$	0.78963	0.84939
$\eta_{ m BFPT}$	0.79889	0.79880
$\eta_{ m CP}$	0.80000	0.82343
$T_{\mathrm{TTDFWHl}}/$	-1.70000	2.80000
$T_{\rm TTDFWH2}/$	0.00000	1.15643
$T_{\rm TTDFWH3}/$	0.00000	-1.90529
$T_{\mathrm{TTDFWH4}}/$	2.80000	0.22169
$T_{\mathrm{TTDFWH5}}/$	2.80000	-0.92037
$T_{\rm TTDFWH6}/$	2.80000	-0.73309
$T_{\mathrm{TTDFWH7}}/$	2.80000	0.40515
$T_{\rm SH}/$	537.00000	547.61642
年度化总成本/(\$	S/s) 2.4032371	2.3688085
总投资成本/(10 ⁸	³ \$) 1.419213	1.357657

全局优化结果

1.1.1

表4

14

表 5 最优工况下热经济学成本分析结果 Tab. 5 Results of thermoeconomics cost analysis under the optimal conditions

			-		
编	组	优化前投资	优化后投资	优化前	优化后
号	件	成本 Z/\$	成本 Z/\$	$c_{\rm P}/(10^{-6}\text{/kJ})$	$c_{\rm P}(10^{-6}\text{/kJ})$
1	FWH7	1363149.44	1497402.38	13.988	13.663
2	FWH6	1080873.03	1203748.44	10.108	9.840
3	FWH5	947519.34	1022862.47	8.936	8.765
4	FWH4	1453323.80	1449677.56	8.594	8.433
5	DTR	1733233.94	1587852.01	8.682	8.615
6	FWP	313396.14	520306.30	11.584	11.357
7	FWH3	1324819.86	1469952.65	7.654	7.657
8	FWH2	2029160.79	1789952.00	7.158	7.091
9	FWH1	1588756.14	1261279.09	6.999	6.948
10	B-SH	56166269.91	52791927.47	5.630	5.601
11	HP1	8410311.55	9585385.08	7.537	7.465
12	HP2	4277300.31	4112267.53	7.522	7.449
13	RH	7659036.81	7198899.20	5.243	5.196
14	IP1	6207245.31	6363669.60	7.422	7.383
15	IP2	6947359.56	5333705.55	7.480	7.272
16	LP1	3124693.95	3610437.11	7.656	7.575
17	LP2	5397112.65	4524265.35	7.507	7.711
18	LP3	7124786.76	6023293.83	7.665	7.116
19	LP4	3617976.41	3744453.54	7.784	7.708
20	LP5	4931279.41	5440794.31	8.980	8.827
21	BFPT	2038141.32	1883227.57	9.572	9.565
22	CND	3654896.49	3638661.59	0.422	0.418
23	СР	44472.41	53422.63	10.938	10.701
24	GEN	9581305.63	9658234.53	8.017	7.896

第 26 期

4.2 系统灵敏度分析

系统灵敏度是系统优化模型中参数及各种变 量的微小扰动对系统输出参数及性能指标所产生 影响的定量表示。本文分析了以下 2 种情况的灵敏 度: 系统自变量和目标函数对外部环境参数(物理 和环境参数)变化的灵敏度; 系统目标函数对自变 量变化的灵敏度。

(1)外部环境参数的灵敏度。

由于系统优化通常在预先设定好的物理和环境 条件下进行,而环境参数的变动性和不确定性通常很 大,为此,本文研究了"外部燃料价格"、"投资成本"、 "机组净负荷"、"年度运行小时数"这4个参数的变 化对年度化总成本和总投资成本以及系统自变量的 影响。图4给出了这4个参数对年度化总成本Γ及总 投资成本 Z的影响情况。结果显示:机组净负荷对 Γ 和 Z 的影响最为明显。值得注意的是:前3个参数对

Fig. 4 Sensitivity analysis of the external environment parameters on the annual cost and the total investment cost $\Gamma \pi Z$ 的影响规律是线性单调增加的,随着年运行小时数的增加, Z 也是增加的,但是由于 Z 增加的速率 小于 1/H 减小的速率 (参见公式(2)), Γ 是随之减小的。图 5 给出了这 4 个参数对 BOI、HP2、IP1、IP2、

LP1、LP3、LP4 最优效率的影响情况。结果显示: 机组净负荷相对另外3个参数对系统自变量最优解的 影响较小;这4个参数对其他系统自变量的影响规律 与此类似。具体情况参见文献[15]。

(2)系统自变量在最优解附近变化时的灵敏 度。

研究系统自变量对系统目标函数(年度化总成本)的灵敏度,能定量的研究自变量对优化结果的影响,同时验证所获得的最优解是否为全局最优。分析结果显示:由系统优化得到的最优解,在系统研究范围之内,能使目标函数达到最小值。同时,锅炉效率变化对目标函数影响最大,汽机、给水泵效率以及主蒸汽和再热蒸汽温度变化对其影响其次,加热器端差变化对其影响最小。图6给出了几个代表性的自变量对系统目标函数的灵敏度分析结果。

图 6 系统自变量对总目标函数的灵敏度分析 Fig. 6 Sensitivity analysis of the independent variables on the objective function

5 结论

本文利用热经济学结构理论,以 300MW 燃煤 机组为例,研究了复杂能量系统的优化问题,建立 了热经济学成本模型和全局优化模型。全局优化的 目标函数设定为最小化系统的年度化总成本,等式 和不等式约束方程分别设定为系统的物理模型(质 量平衡、能量平衡、设备特性方程等)和经济性模型 (投资成本计算方程等),利用 SQP 算法直接求解全 局优化模型,获得全局优化模型的最优解。系统经 过热经济学优化之后其总投资成本降低了4%。

为了检验全局优化所获得的最优解,本文利用 系统灵敏度的分析方法,研究了外部环境参数及系 统自变量变化对系统的影响。通过分析发现,机组 净负荷相对于年运行小时数、外部燃料价格和投资 成本对年度化总成本影响较大,而它对系统自变量 最优解的影响稍小一些。通过研究系统自变量在最 优解附近的扰动分析发现,本文获得的最优解能够 确保系统具有全局最小的年度化总成本。另外,加 热器端差变化对年度化总成本影响较小,其它参数 变化对年度化总成本影响较大,特别是锅炉效率变 化对年度化总成本影响最大。

本文所用的全局优化方法建模工作量较小,不 需要考虑系统分解等复杂问题,求解精度较高,同 时可以扩展到考虑最优综合、环境影响、系统可靠 性等多目标的热经济学分析和优化。但当系统自变 量和约束方程维数较高时,利用该方法进行求解 时,系统计算量大,迭代收敛较慢,收敛速度完全 取决于系统的特性及数学优化算法的性能。

参考文献

 Frangopoulos C A .Thermoeconomic functional analysis :a method for optimal design or improvement of complex thermal systems 第26期

[D] . Georgia : Georgia Institute of Technology , 1983 .

- [2] El-Sayed Y M, Evans R B. Thermoeconomics and the design of heat systems[J]. Journal of Engineering for Power. 1970, 92(1): 27-35.
- [3] Frangopoulos C A . Methods of energy systems optimization
 [C] .Optimization of Energy Systems and Processes ,Gliwice ,Poland , 2003 .
- [4] Von Spakovsky M R , Evans R B .Engineering functional analysis-Part I , II[J] .Journal of Energy Resources Technology , Transactions of the ASME , 1993 , 115(2): 86-99 .
- [5] Valero A, Serra L, Lozano M A. Structural theory of thermoeconomics [C]. International Symposium on Thermodynamics and the Design, Analysis and Improvement of Energy Systems, New Orleans, LA, USA, 1993: 189-198.
- [6] Uche J. Thermoeconomic analysis and simulation of a combined power and desalination plant[D]. Department of Mechanical Engineering, University of Zaragoza, Spain, 2000.
- [7] Lozano M A , Valero A , Serra L . Theory of the exergetic cost and thermoeconomics optimization[C] . Proceedings of the International Symposium ENSEC' 93. Cracow , Poland , 1993 .
- [8] 张晓东,王加璇,高波.关于汽轮发电机组热经济学边际成本的研究[J].中国电机工程学报,2003,23(5):140-144.
 Zhang Xiaodong, Wang Jiaxuan, Gao Bo. A study on the thermoeconomic marginal costs of steam turbo-generator unit
 [J]. Proceedings of the CSEE, 2003,23(5):140-144(in Chinese).
- [9] 程伟良,王清照,王加璇.分析能耗的边际/州成本模型[J].中国 电机工程学报,2004,24(10):179-182.
 Chen Weiliang, Wang Qingzhao, Wang Jiaxuan .Energy consumption analysis for a marginal exergy cost model[J]. Proceedings of the CSEE,2004,24(10):179-182(in Chinese).
- [10] 程伟良,王清照,王加璇.300MW 凝汽机组的热经济学成本诊断
 [J].中国电机工程学报,2005,25(8):126-129.
 Chen Weiliang, Wang Qingzhao, Wang Jiaxuan. Thermoeconomic cost diagnosis of 300MW condensing power plant[J]. Proceedings of the CSEE,2005,25(8):126-129(in Chinese).
- [11] Zhang Chao, Wang Yan, Zheng Chuguang, et al. Exergy cost analysis of a coal fired power plant based on structural theory of thermoeconomics[J]. Energy Conversion and Management, 2006, 47(7-8): 817-843.
- [12] 张超,刘黎明,陈胜,等.基于热经济学结构理论的热力系统性 能评价[J].中国电机工程学报,2005,25(24):108-113.
 Zhang Chao,Liu Liming,Chen Sheng, et al.Performance evaluation of thermal power system based on the structure theory of Thermoeconomic[J]. Proceedings of the CSEE,2005,25(24):108-113(in

Chinese).

- [13] 张超,陈胜,刘黎明,等.电站热力系统的热经济学故障诊断[J].华中科技大学学报(自然科学版),2006,34(6):99-102.
 Zhang Chao, Chen Sheng, Liu Liming, et al. Thermoeconomic approach to diagnosing malfunctions in a thermal power system[J]. J Huazhong Univ. of Sci. & Tech. (Nature Science Edition), 2006, 34(6):99-102(in Chinese).
- [14] Hua B , Chen Q L , Wang P . A new exergoeconomic approach for analysis and optimization of energy systems[J] . Energy , 1997 , 22(11) : 1071-1078 .
- [15] 张超.复杂能量系统的热经济学分析与优化[D].武汉:能源与动力工程学院,2006.
 Zhang Chao. Thermoeconomic analysis and optimization of complex energy system[D]. Huhan: Institute of Energy and Power. Huazhong
- [16] Valero A ,Serra L ,Uche J .Fundamentals of exergy cost accounting and thermoeconomics . Part I : theory[J] . Journal of Energy Resources Technology , 2006 , 128(1) : 1-8 .
- [17] Silveira J L , Tuna C E . Thermoeconomic analysis method for optimization of combined heat and power systems - Part I[J] .Progress in Energy and Combustion Science . 2003 , 29(6) : 479-485.
- [18] Gogus Y A .Thermoeconomic optimization[J] .International Journal of Energy Research , 2005 , 29(7) : 559-580 .
- [19] Rodriguez-Toral M A , Morton W , Mitchell D R . The use of new SQP methods for the optimization of utility systems [J] . Computers & Chemical Engineering . 2001 , 25(2-3) : 287-300 .
- [20] Spellucci P . A new technique for inconsistent QP problems in the SQP method [J] . Mathematical Methods of Operations Research . 1998 , 47(3): 355-400 .

收稿日期:2007-04-20。

Univ. of Sci.& Tech., 2006.

作者简介:

熊 杰(1984—),男,硕士研究生,从事热经济学研究,xiongjiebbz @21cn.com;

张 超(1977—),男,博士,从事热经济学研究;

赵海波(1977—),男,博士,副教授,从事颗粒群平衡模拟、多相流和 CO2减排等研究;

郑楚光(1945—),男,博士,教授,博士生导师,从事多相流、煤的清洁燃烧、重金属污染等研究。

(编辑 车德竞)