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Abstract

Monte Carlo (MC) constitutes an important class of methods for the numerical solution of the general dynamic equation (GDE) in particulate
systems. We compare four such methods in a series of seven test cases that cover typical particulate mechanisms. The four MC methods studied
are: time-driven direct simulation Monte Carlo (DSMC), stepwise constant-volume Monte Carlo, constant number Monte Carlo, and multi-Monte
Carlo (MMC) method. These MC's are introduced briefly and applied numerically to simulate pure coagulation, breakage, condensation/
evaporation (surface growth/dissolution), nucleation, and settling (deposition). We find that when run with comparable number of particles, all
methods compute the size distribution within comparable levels of error. Because each method uses different approaches for advancing time, a
wider margin of error is observed in the time evolution of the number and mass concentration, with event-driven methods generally providing
better accuracy than time-driven methods. The computational cost depends on algorithmic details but generally, event-driven methods perform
faster than time-driven methods. Overall, very good accuracy can be achieved using reasonably small numbers of simulation particles, O(103),
requiring computational times of the order 102−103 s on a typical desktop computer.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Dynamic phenomena in dispersed systems, such as particle
birth (nucleation etc.), death (settling, or saying, deposition),
size enlargement (coagulation, surface growth, etc.), and
disintegration (breakage, surface dissolution, etc.) are of great
importance for both natural and laboratory systems. Indeed,
these processes are inherent for aerosols, particulate matter,
colloidal suspensions, nanoparticles, emulsions, polymers,
galaxies, etc. For example, trace metal enrichment on
particulate matter (PM) for pulverized-coal-fired power plants
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is dominated by condensation, coagulation and nucleation [1];
both coagulation and breakage, take place simultaneously
during long chain polymer synthesis in chemical engineering,
leading to an equilibrium distribution [2]; PM inside a turbulent
exhaust plume of a diesel engine is formed by a number of
processes including homogeneous nucleation and coagulation
[3]. The particle size distribution (PSD) usually evolves in both
time and space under the influence of these dynamic events.
Since many important properties of dispersed particles, such as
light scattering, electrostatic charging, toxicity, radioactivity,
sedimentation, capturing strategy, etc, depend on their size
distribution, the time evolution of size distribution is issue of
fundamental interest.

The evolution of the particle size distribution is mathemat-
ically represented by the population balance equation (PBE).
In the presence of coagulation, breakage, nucleation, surface
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growth/dissolution (condensation/evaporation) and settling
(deposition) this equation is as follows:
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Here, v is the particle volume (m3), taken to represent size;
n(v)(m−6) is the size distribution such that n(v)dv (m−3) is the
number concentration of particles in the size range v to v+
dv; β(v,u)is the coagulation rate constant between sizes v and u
(m3/s); S(v) (s−1) is the breakage rate of size v; Γ(v|u) (m−3) is
the number concentration of fragments of size v to v+dv
produced by the breakage of size u; J (v)(m−6 s−1) is the
nucleation rate; vnuc (m

3) is the size of the nucleus; CS (m
−3) is

the concentration of the condensing species; KS(v) (m
3/s) is the

rate of surface deposition onto particles of size v; vS (m
3) is the

volume of the condensing species; and E(v) (s−1) is the rate of
loss of particles with size v by settling or other mechanisms.

This equation can, in principle, be solved once the initial
conditions and all rate laws are specified. In practice, this is a
complex task due to the integro-differential nature of the equation
which requires discretization in both time and size. The
methodologies available for its solution can be divided into
deterministic and stochastic. On the deterministic front, the
possible choices include themethod ofmoments [4–15], sectional
method [16], discrete method [17] and discrete-sectional method
[18,19]. In these methods the required integrals are calculated
either through an appropriate discretization scheme, or by
quadrature. In contrast to deterministic integration, stochastic
methods utilize Monte Carlo (MC) to simulate the evolution of a
finite sample of the particle population [20–36].

The discrete nature of MC method, which is based on the
physical model of dispersed systems, adapts itself naturally to
dynamic process. Population balance problems and MC
methods are integrated seamlessly into a single framework as
they both have deal with discrete events. Several applications of
MC to population balances have appeared in recent years,
including agglomeration [37], coalescence [20,38], restructuring
[39,40], higher-dimensionality problems [41], multi-component
aerosols [42], coating [31], chemical reaction [43], crystalliza-
tion [44], bipolar charging [45], fractal aggregation [46] and wet
scavenging [33]. In MC-based methods, discretization of the
size distribution is not required. This simplifies the program-
ming effort significantly compared to deterministic methods and
allows the inclusion of multiple mechanisms (coagulation,
breakup, etc.) in a straightforward manner. The simultaneous
solution of population balances and the Navier–Stokes equa-
tions is also possible if fluid mechanics are treated in a stochastic
manner [47]. With regards to multicomponent — and multivar-
iate, in general— problems, Monte Carlo essentially represents
the only practical choice for obtaining distributions that depends
on more than one size coordinate [48]. At present, the main
disadvantage of MC methods is that they cannot be easily
interfaced with standard process simulators, which generally
implement deterministic integration routines.

MC methods can be divided into two classes according to the
treatment of the time step. These are referred to as “time-driven”
and “event-driven”MC. In time-driven simulations a time step is
specified, then the simulation implements all possible events
within that step [23]. In event-driven, first an event is
implemented, then the time is advanced by an appropriate amount
[22]. Monte Carlo methods can be further classified according to
whether or not the total number of simulation particles is changed
during the course simulation. In the classical approach [22], the
simulation tracks a constant reaction volume in which the number
of particles varies depending on the mechanisms that transform
the particle distribution. For example, in coagulation the number
of particles decreases continuously while in fragmentation it
increases. A practical difficulty with this implementation is that
prolonged simulation causes the number of particles to exceed the
bounds of the simulation box, as when coagulation reduces the
number of particles to one, or when fragmentation produces more
particles than the size of the simulation box. This problem can be
avoided by “regulating” the number of particles, periodically or
continuously, so as to maintain the number of simulated particles
within bounds [23,24,31]. These features may be combined to
construct Monte Carlo variants that implement event- or time-
driven MC with regulated or variable number of simulation
particles. This has created a situation in which the potential user is
left with no firm basis for selecting the most suitable method for a
given problem. Limited comparisons have appeared in the
literature [32], however, a comprehensive study of different
Monte Carlomethods on a wide range of problems is lacking. The
purpose of this paper is to provide such comparison and to
develop criteria that may guide the user through the selection of
the appropriate techniques. To this end, we test four algorithms
and their variations over a common set of problems that include
coagulation, breakup, condensation/evaporation (surface growth/
dissolution), nucleation and settling (deposition). The four
methods studied are:

• Constant number MC: this is an event-driven method in
which the number of particles remains constant and equal to
a value specified at the beginning of the simulation [24–26].

• Stepwise constant-volume MC: this method is also event-
driven and regulates the number of particles periodically in
order to keep them within the bounds of the simulation box
[31,32].

• Direct simulation Monte Carlo developed by Liffman [23]
(noted as time-driven DSMC). This is a time-driven
simulation with periodic regulation of the number of particles.

• Multi-Monte Carlo: This method is time-driven and
combines elements of constant-number and constant-volume
Monte Carlo [33–36].

These methods are described in the next section.
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2. Introduction of four MC methods

2.1. Constant-number MC

The constant number method [24–26] is an event-driven
simulation. In the context of population balances, “event” refers to
a specific action (transformation) involving particles, for example,
aggregation of particles i and j, breakup of particle k, surface
deposition onto particle l, etc. At each step of the simulation, a
single event is implemented, the size of the simulation box is
adjusted and the time increment is computed. The special feature
of this method is the restoration of the simulation box to the
desired size, which is done as explained below. In coagulation,
each event removes a particle from the simulation box. This
vacancy is filled by randomly choosing a particle in the simulation
box and placing its copy in the simulation box. In k-nary
fragmentation, each event produces a net k−1 fragments that
must be accommodated. In this case, k−1 randomly selected
particles in the simulation box are erased. This approach ensures
that the number of particles in the simulation box after each event
is the same as before the event, regardless of whether the particle
concentration increases or decreases with time. The continuous
regulation of the simulation size requires special treatment of the
time increment and of the mass and number concentrations of the
particles [26]. The mass concentration, V, of the particles is
computed from the difference equation

DV
V

¼ dvevent
Nv̄

ð2Þ

in which, N is the constant number of particles in the simulation
box, v̄ is the mean size (mass) in the box, and δvevent is the change
(positive, negative, or zero) in the mass of the system as a
result of the event implemented. In coagulation and fragmenta-
tion, δvevent=0, since mass is conserved for these processes; in
nucleation it is positive and equal to the mass of the nucleus, vnuc;
in evaporation it is negative and equal to− vS, where vS is themass
of the evaporating species. The number concentration, C is
calculated from the mass concentration and the known average
size,

C ¼ V
v̄

ð3Þ

and the time increment is given by [26]

Dt ¼ C
N

1X
i

Ri

ð4Þ

where
P

i Ri the sum of the rate per unit volume (m−3 s−1) of all
processes that take place. Eqs. (2) and (3) are based on the
requirement that the mass concentration of particles must remain
the same before and after restoration. It is possible to derive an
alternative set of equations by enforcing a similar requirement for
the number concentration. Lin et al. [26] have shown that this
approach is less accurate, therefore, it is not considered in the
present study.
2.2. Stepwise constant-volume method

This is an event-driven method that operates in constant-
volume mode but which periodically adjusts the number of
particles in the simulation box. During the constant-volume
part, the simulation box contains N particles, whose number
varies according to the particulate event that is implemented in
each step. The number concentration that corresponds to the
number of particles in the box is

C ¼ N
N0

C0 ð5Þ

where C0 is the particle concentration at time zero and N0 is the
initial number of particles in the simulation box. The mass
concentration is V=Cv and the time increment is obtained from

Dt ¼ C0

N0

1X
i

Ri

ð6Þ

The number of particles is regulated periodically following a
procedure used by Liffman [23] and extended by Maisels et al.
[32]: if the number of particles during simulation increases, it is
halved once it reaches the value 2N0; if the number in the simu-
lation box decreases, then it is doubled when it reachesN0 /2.With
each doubling or halving of the simulation box, the right-hand
sides of Eqs. (5) and (6) must be multiplied with 2±1 (with the −
sign for doubling and the + sign for halving) to ensure that
concentrations and time are not affected by the change in the
simulation box. We also note that in the case of coagulation, the
doubling of the sample creates a new sample with identical
statistics, thus avoiding the noise introduced by the random
selection of the particles to fill the box, as done in constant−NMC.

2.2.1. Selection of events
Event-driven methods require the selection of an event at

each time step. This is done in a two-step fashion. First, it is
decided which process (coagulation, fragmentation, etc.) is to
take place. This decision is made with a probability Pi, given by

Pi ¼ RiX
i

Rl

ð7Þ

where Rl is the rate per unit volume (m−3s−1) of each process
(l=coagulation, fragmentation, etc.) and∑ Rl the sum of all rates.
Expressions for the probability of the various processes
considered in this study are summarized in Table 1. Once a
process has been chosen, the simulation must choose a specific
particle or particle pair that must undergo the transformation
specified by the process. Two common methods by which this
may be accomplished are the acceptance/rejection method, and
the so-called inverse (or cumulative probability)method. Both are
briefly explained below, using coagulation as an example. In the
acceptance/rejectionmethod, a pair of particles, (i, j), is selected at
random and is accepted for coagulation with probability

Pij ¼ bðvi; vjÞX
i

X
jpi

bðvi; vjÞ
ð8Þ



Table 1
Time steps and probabilities for different dynamic processes

Event l ti,l (time-driven DSMC) ti,l (MMC) Rl

Coagulation VsX
jpi

bij

VsX
jpi

kwt;ibij

1
2V 2

s

X
i

X
jpi

bij

Breakage 1
Si

1
Si

1
Vs

X
i

Si

Surface growth 1
CSKSðviÞ

1
CSKSðviÞ

CS

VS

X
i

KSðviÞ

Nucleation 1
V 2
s J ðvÞdðvnuc; vÞ

1
V 2
s JðvÞdðvnuc; vÞ

VsJ(v)δ(vnuc, v)

Settling 1
Ei

1
Ei

1
Vs

X
i

Ei

Rl is the rate per unit volume of event l (m−3 s−1).
Vs is the volume of the simulated system (m3).
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in which the numerator is the coagulation kernel for the selected
particles and the denominator is the normalizing factor. The pair is
accepted if the condition, rnd≤Pij, is met, where rnd is a random
number from a uniform distribution in the interval [0, 1]. If the
condition is notmet, the pair is rejected and the process is repeated
until the acceptance condition is met. The method is simple to
program but suffers from high rejection rates for certain types of
kernels. The acceptance ratio can be improved if the denominator
in Eq. (8) is replaced by the maximum term of the summation.
This increases the absolute value of Pijwhile ensuring that is less
than unity. This substitution results in additional savings in
computational time as the double summation in the denominator
of Eq. (8) is not required.

The inverse method avoids the problem of rejections by
always accepting the selected pair. This is done by constructing
the cumulative distribution of Pij from Eq. (8) (see for example
Ref. [22]). A random number rnd in the interval [0, 1] is drawn
and the double summation

PN
i¼1

PN
j¼iþ1 Pij is built sequentially,

until the condition

XiV
i¼1

XjV
¼iþ1

Pij V rnd ð9Þ

is violated for some pair (i′, j′). The last pair (i, j) to satisfy this
condition is the one selected to coagulate. While no time is
wasted in rejections, the inverse method requires the compu-
tation of the double summations in Eqs. (8) and (9) after each
event and demands overall more programming effort compared
to the acceptance/rejection.

2.3. Time-driven direct simulation MC (DSMC) with particle
regulation

This method was described by Liffman [23] for coagulation
and has been extended here to include other particulate
mechanisms. This MC belongs to time-driven methods and
uses a periodic regulation of the number of particles in the
simulation box. In time-driven MC, the time increment, Δt, is
fixed, and every simulation particle is tracked to determine
whether it participates in an event within that time interval. For
example, particle i undergoes coagulation if the following
condition is met:

rndb1−exp½−Dt=2tcoag;i� ð10Þ
where

tcoag;i ¼ VsX
j

bðvi; vjÞ
ð11Þ

is the mean coagulation time of particle i, Vs is the volume of
the simulated system, and rnd is a random number in the
interval [0, 1]. The coagulation partner of particle i, particle j, is
determined with probability

PVij ¼ bðvi; vjÞX
j

bðvi; vjÞ
ð12Þ

using the method of cumulative probabilities. The time
increment, Δt, is computed as

Dt ¼ amin
i
ftcoag;ig ð13Þ

where α is a small multiplicative constant, typically α≤0.01.
By setting the time increment to an interval smaller than the
fastest process in the simulation ensures that at most one event
occurs within time Δt. The precise choice of the parameter α
requires some trial so as to improve the accuracy of the
calculation. The number of particles in the simulation box is
regulated by periodic doubling or halving, using the same
procedure of the stepwise constant-volume method.

2.4. Multi-Monte Carlo (MMC)

This Monte Carlo method belongs to the time-driven variant.
The main departure in this algorithm is the use of a statistical
weight, kwt, that characterizes each simulation particle. In all of
the methods discussed so far, a particle in the simulation box
can be thought to represent C /N particles in the real system,
where N is the number of particles in the simulation box, and C
is the number of particles in the real system. This scale factor is
the same for all particles in the simulation box. In the MMC
method, a simulation particle is viewed to represent a group of
particles with a weight factor kwt that represents the number of
real particles in that group [33–36]. The MMC method is based
on time-driven MC technique, the main idea of which is similar
to time-driven DSMC except that the simulation also tracks the
weight factors, kwt.

The method is briefly outlined here using breakage as an
example. First, the time step,Δt is set as in Eq. (13) based on the
fastest breakup time in the system. Breakage of particle i is
implemented if the condition

rndbSðviÞDt ð14Þ



Table 2
Computational details

Case Parameter Stepwise
constant-V

Constant-
N

Time-driven
DSMC

MMC

1 N § 1000 1000 1000 1000
(constant
kernel)

a – – 0.01 0.01

CPU (s) 18.07 45.15 5.55 13.01
2 N § 2000 2000 2000 2000
(linear
kernel)

a – – 0.005 0.005

CPU (s) 23.52 71.67 41.30 208.79
3 N § 2000 2000 2000 2000
(quadratic
kernel)

a – – 0.01 0.01

CPU (s) 14.81‡
(12.43†)

49.97†
(54.18‡)

49.13 241.80

4 N § 3000 3000 3000 3000
(breakage) a – – 0.0002 0.0002

CPU (s) 6.55 2.99 21.71 20.59
5 N § 3000 3000 3000 3000
(surface
growth)

a – – 0.01 0.001

CPU (s) 101.28 104.68 47.39 578.01
6 N § 3000 3000 3000 3000
(nucleation) a – – – –

CPU (s) 6.51 3.01 6.59 29.60
7 N § 3000 3000 3000 3000
(settling) a – – 0.00033 0.001

CPU (s) 13.02 23.81 29.90 142.02

Memory allocation (all cases): O(N)
§For stepwise constant-V and time-driven DSMC, N refers to the initial number
of particles in the simulation.
†Using acceptance/rejection method; ‡ Using inverse method; in all other cases,
step-wise constant-V implements inverse method while constant-N implements
acceptance/rejection.
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is met, where rnd is a random number in the interval [0,1]. Upon
fragmentation, all fragments inherit the weight factor of the
parent particle. To regulate the number of particles, one fragment
is stored in the position of the parent particle and all others are
merged with simulation particles whose mass most closely
matches that of the fragment; if more than one such simulation
particles match the mass of the fragment, one is chosen randomly.
Suppose, for example, that particle i generates fragments i1 and
i2. The first fragment replaces the parent particle while the second
fragment replaces a particle j whose mass closely matches vi2.
The masses and weight factors of the particles that now occupy
the positions i and j are computed as follows:

ðviÞnew ¼ vi1 ; ðkwt;iÞnew ¼ kwt;i
ðvjÞnew ¼ ðvjÞold; ðkwt;jÞnew ¼ ðkwt;jÞold þ kwt;i

ð15Þ

The first equation replaces the mass of particle i with the
mass of the first fragment; the second equation increases the
weight factor of particle j by that of the second fragment. In this
method, the number of simulation particles remains constant
while concentrations are tracked via the weight factors of the
particles.

3. Results

3.1. The test cases

The four methods are applied to a set of standard problems
involving coagulation, breakage, surface deposition (conden-
sation), nucleation, and settling. These represent a wide range of
particulate mechanisms and result in population balance
equations whose right-hand side ranges from integral form, to
differential, to algebraic. The seven cases examined in this
paper are summarized below:

Case 1. Coagulation with size-independent coagulation kernel,

bðvi; vjÞ ¼ b0 ¼ 10−10m3s−1 ð16Þ
and with initial particle concentration C0=10

10 m−3.

Case 2. Coagulation with linear kernel,

bðvi; vjÞ ¼ b0
vi þ vj
v0

ð17Þ

with β0=10
−10 m3 s−1 and initial particle concentration

C0=10
10 m−3.

Case 3. Coagulation with quadratic kernel,

bðvi; vjÞ ¼ b0
vjvj
v20

ð18Þ

with β0=10
−10 m3 s−1 and initial particle concentration

C0=10
10 m−3.

Case 4. Breakage into 12 equal-size fragments with power-law
breakage rate,

SðvÞ ¼ S0
v
v0

� �1:8

; S0 ¼ 1 s−1 ð19Þ

and with initial particle concentration of 3×103 m−3.
Case 5. Surface growth. In this model, a chemical precursor with
dimensionless size vs /v0=1 deposits onto the surface of seed
particles with a growth rate that has linear dependence on the size
of the particle, KS(v)=10

−10v (m3 s−1). The initial concentration
of the precursor molecules is 1010 m−3 and the concentration of
seed particles is C0=10

10 m−3. The same model with minor
modification applies to dissolution processes, however, the
simulations shown here are only for surface deposition.

Case 6. Nucleation via first-order chemical reaction:

A0 Y
KN

A1

where A0 is a precursor species and A1 is the nucleus formed by
the reaction, and KN is the first-order constant for the nucleation
reaction. The simulations are run with KN=5×10

−6 s−1, and an
initial precursor concentration 105 m−3, an initial nucleus
concentration C0=3000 m−3 and dimensionless size v /v0=1.

Case 7. Gravitational settling with rate,

EðvÞ ¼ E0
v
v0

� �2=3

; E0 ¼ 10−5 s−1 ð20Þ

with initial particle concentration C0=10
10 m−3.

The simulation tracks the dimensionless particle mass, v /v0,
and in all cases the initial state is monodisperse with v /v0=1.



Fig. 1. Results for constant kernel (case 1): (a) size distributions; (b) error in size
distributions.

Fig. 2. Results for constant kernel (case 1): (a) number concentration; (b) error in
number concentration.
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For all test cases we compute the number and mass
concentrations as a function of time, as well as the size
distributions for cases 1–4 (in cases 6 and 7 the size distribution
remains monodisperse and in case 5 nearly monodisperse). The
results shown represent the average of three simulations with
different seeds for the random number generator. Additional
computational details are reported in Table 2. Unless stated
otherwise, the stepwise constant-V method is implemented
using the inverse method and the constant-N method using the
acceptance/rejection method.

3.2. Coagulation (cases 1, 2, 3)

The three coagulation kernels examined here are the so-
called classical kernels whose analytic solution is known [49].
Detailed results for the constant kernel are shown in Figs. 1–3
(case 1). The linear and quadratic kernels (cases 2 and 3) exhibit
very similar behavior and are not shown. Fig. 1a shows the size
distribution at t=10tcoag, where tcoag=1 /C0β0. All methods
track the size distribution well. In all cases the fluctuations of
the computed distributions increase at the high-end of the
distribution because of the smaller number of particles in this
size range. Among the four methods, MMC exhibits the least
error at the high-end of the size distribution. This is a result of
the statistical weights, kwt, which effectively increase the
number of particles tracked by the MMC method.

To compare the relative performance on a quantitative basis,we
compute the overall error in the size distribution, σd, as follows:

rd ¼ 1
K

XK
k¼1

ðnk−nthk Þ2
n2tot

( )1=2

ð21Þ

where nk is the number of clusters containing k primary particles,
nk
th is the theoretical value, ntot is the total number of particles in the
simulation and K is the total number of particle masses in the
simulation. Values of σd are averaged over three runs and the
results are shown in Fig. 1b. Initially, the event-driven methods
performmore accurately but for times longer than about t / tcoag∼1
the error for all four methods practically collapses onto a single
curve that slowly increases with time. In this regime, all methods
yield nearly identical error.

Fig. 2a shows the evolution of the number distribution in the
form of the ratio C /Ctheory. The associated error, σC, shown in
Fig. 2b, is calculated as the standard deviation of the
fluctuations seen in Fig. 2a, averaged over three independent



Fig. 3. Results for constant kernel (case 1): (a) mass concentration; (b) error in
mass concentration.

Fig. 4. Results for linear kernel (case 2): (a) linear kernel, error in distribution;
(b) linear kernel, error in number concentration; (c) linear kernel, error in mass
concentration.
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runs. A similar analysis of the mass concentration is shown in
Fig. 3. Stepwise constant-V is in exact agreement with the mass
concentration, and gives the smallest error in the number
concentration. The constant-N method is exact for the
mass concentration but shows a larger error in the number
concentration. The two time-driven methods produce error with
respect to both the number and mass concentrations. This varied
behavior reflects the different approaches by which each
method advances time. In time-driven methods the time step
is specified by the user. As with any standard integration
technique, the accuracy improves if the integration step is
reduced, but this improvement comes at the expense of
computational time. Event-driven methods, on the other hand,
do not specify the time step: instead, this step is given by the
mean time that elapses between events. In event-driven methods
that regulate the particle number continuously, there is added
flexibility to fine-tune the calculation of the time step. For
example, the time increment in the constant-N method can be
improved if it is calculated as suggested in Lee and Matsoukas
[25]:

DtV¼ vk
v̄
d
C
N

1P
i Ri

ð22Þ
where vk is the particle mass that is chosen to fill the vacancy in
the simulation box after a coagulation event. This expression,
which represents a variation on Eq. (4) is indeed more accurate,
as Fig. 2b shows. Such detailed considerations are, however,
beyond the scope of this study and for this reason we will
continue to use the simpler Eq. (4) in the implementation of the
constant-N method.



Fig. 5. Results for quadratic kernel (case 3): (a) quadratic kernel, error in
distribution; (b) quadratic kernel, error in number concentration; (c) quadratic
kernel, error in mass concentration.

Fig. 6. Results for breakage (case 4): (a) size distributions; (b) error in size
distributions.
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Fig. 4 shows the errors in the distribution, number
concentration and mass concentration for coagulation with the
linear kernel. Similar graphs for the quadratic kernel are shown in
Fig. 5. Qualitatively, the behavior of all kernels is the same: the
error in the size distribution appears to converge for all four
methods, while the error in the concentration (number and mass) is
larger for the time-driven methods. We have further used the
quadratic kernel as a test case for the relative performance of the
acceptance/rejection and the inverse methods. For this purpose, the
two event-driven algorithms, constant-N and stepwise constant-V,
were tested with both acceptance/rejection and inverse method and
the results are shown inFig. 5.Aswe see, the error is not affected by
the methodology that is chosen to select events. What is affected,
however, is the computational time (see Table 2). In the case of the
quadratic kernel, the acceptance/rejection method remains some-
what faster both in stepwise constant-VMC (12.43 s) and constant-
N MC (49.97 s) compared to the inverse method (14.81 s in
stepwise constant-VMC, and 54.18 s in constant-N MC).

3.3. Breakage (case 4)

This breakage model produces 12 equal-size fragments and
results in sharp increase of the number of particleswith time and in
the formation of a wide size distributions. The analytic solution for
this model is reported in [50]. The size distribution is shown in
Fig. 6 at t=0.5tbrk and t=50tbrk, where tbrk=1/S0. Because all
fragments of a parent particle are of equal size, the distribution is
sparse as it contains particles only at masses that are powers of 1/
12. The distribution is predicted very well by all methods. The
corresponding error, is shown in Fig. 6b, and, as in coagulation,we



Fig. 7. Results for breakage (case 4): (a) error in number concentration; (b) error
in mass concentration.

Fig. 9. Results for nucleation (case 6): error in number concentration.
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notice that all four methods converge to remarkably similar error
after t≈10brk. The number concentration is predicted very well by
the event-driven methods and with somewhat larger error by the
time-driven methods (Fig. 7a). We further notice that constant-N
and MMC conserve the mass of the particles with great accuracy,
while stepwise constant-V and time-driven DSMC exhibit larger
Fig. 8. Results for surface growth (case 5): error in mass concentration.
errors, which, however, remain smaller than 4% (Fig. 7b). This
discrepancy originates from the peculiarities of halving the
population, specifically, from the fact that the number of particles
in the simulation box cannot be exactly doubled when breakage in
twelve pieces is considered. As a result, several particles must be
added or discarded randomly to restore the sample size after
halving. This problem can be avoided if N is divisible by m−1,
where m is the number of fragments after each breakage.

3.4. Surface growth (case 5)

In this model, a chemical precursor, of size vS and with initial
concentration CS0, deposits on the surface of particles with
linear growth law. The concentration of particles is C0 and the
initial particle size is v0=vS. The analytical solution for the
number and mass concentrations is

C ¼ C0; V ¼ C0vSe
t=tS ; tS ¼ 1=C0KSðvSÞ ð23Þ

The size distribution for this model is nearly monodisperse
and the number concentration remains, by model assumption,
constant. Therefore, results are shown only for the mass
concentration, C (see Fig. 8). All methods here have very high
precision for linear condensation case. This is largely a
Fig. 10. Results for settling (case 7): error in number concentration.
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consequence of the fact that the number of particles remains
constant, thus no regulation of the sample size is required. The
two event-driven methods are equivalent in this case and lead to
identical results. The two time-driven methods are equivalent if
every particle in the MMC simulation is tracked (i.e. if kwt=1
for all particles). The small differences between the time-driven
methods are due to the different value of a used (0.001 in
MMC, 0.01 in time-driven DSMC).

3.5. Nucleation (case 6)

In this model we consider the formation of new particles
fueled by a first-order chemical reaction, in the absence of any
other growth mechanism. The number concentration, C, and the
mass concentration, V, are given by

C ¼ C0 þ A0ð1−e−t=tnuclÞ ð24Þ

V ¼ vnuclC ð25Þ
where C0, vnucl, are the number concentration and size of nuclei
present at time zero, A0 is the precursor concentration at time
zero, and tnucl=1/KN. Since particle number and volume
concentration differ only by a multiplicative constant, results
are only shown for the error in the number concentration, σC

(Fig. 9). All four MC's describe the dynamic evolution of
nucleation very well and while the error increases with time, it
remains below 0.01%.

3.6. Gravitational settling (case 7)

In this model, particles are assumed to exit the reactor
volume with a rate that is proportional to the 2/3 power of the
particle mass. The number concentration, C, and mass
concentration, V, are given by

C ¼ C0e
−t=tE ð26Þ

V ¼ v0C ð27Þ

where v0 is the particle size, tE=1 /E0, and E0 is the rate
constant for settling. In this model the particle size distribution
remains monodisperse and the mass distribution is directly
proportional to the number distribution. Fig. 10 shows the error
in the number concentration. The result is very similar to that
seen in case 5 (surface growth) with the event-driven methods
showing much less error than the time-driven methods.

4. Discussion

The effect of the number of particles on accuracy has been
previously studied for both constant-N [24] and stepwise
constant-V [31,32] and as in all Monte Carlo methods in
general, it was found that increasing the number of simulation
particles increases the accuracy of the calculation. To provide a
common basis for comparison, we have conducted the present
simulations with comparable numbers of particles. Given the
peculiarities of the algorithms, it is not possible to keep the
number of particles exactly the same in all methods; in stepwise
constant-V and in time-driven DSMC, for example, the number
of simulation particles oscillates between N and 2N (or N/2) and
is not constant. For these two methods, the reported number of
particles (see Table 2) is that at the beginning of the simulation.
Perhaps the most important conclusion of this study is that the
error in the size distribution is very similar for all four methods,
when comparable numbers of simulation particles are used. This
conclusion stands both in coagulation and in breakage
problems.

The second observation is that performance overall depends
on whether the method is event- or time-driven. The two event-
driven methods, constant-N and stepwise constant-V are very
similar in concept and perform at nearly identical levels of
accuracy. In the constant-N method, the size of the simulation
box is adjusted after each and every event so as to contain N
particles. The stepwise method begins with N0 particles and the
simulation box is readjusted when the number of particles
reaches 2N0 or N0/2, as the case may be. The artificial
regulation of the simulation box introduces some noise in the
simulation. In the constant-N method, this happens at the end of
each event, whenever a particle is added or removed. In the
stepwise constant-V method it only happens with mechanisms
that increase the number of particles because the halving of the
simulation box does not necessarily decrease all size classes by
a factor of 2. With respect to mass concentration, constant-N
and stepwise constant-V perform with high accuracy, both with
mechanisms that conserve the mass of the particle population
(coagulation, breakage) and with those that do not (surface
growth, nucleation, settling). With respect to the number
concentration, the relative performance depends on the
particular problem (stepwise constant-V performs better in
coagulation, but constant-N performs better in breakage) but
such differences can be minimized if refinements such as Eq.
(22) are used.

Time-driven methodologies calculate the size distribution
with comparable accuracy as the event-driven methods. These
methods, however, tend to larger error in the number and mass
distribution, especially at longer simulation times. The main
source for this error is the fact that dynamic events within the
time step Δt may depend on each other and are not uncoupled.
This error can be reduced by decreasing the multiplicative
constant α but this also leads to longer computational times. It is
worth noting that the MMC method is capable of tracking the
size distribution to larger sizes compared to all other methods.
This is attributed to the weight factors, kwt, which effectively
increase the number of particles beyond the nominal number in
the simulation box.

The computational costs are summarized in Table 2, and all
of simulation are taken in the same desktop PC equipped with
Athlon XP2500+, 512M, Visual Fortran 6.0 and Windows XP
professional. The CPU times reported should only be compared
within the same case because the simulation time varies among
cases. The CPU time depends on the number of simulation
particles and for the time-driven methods on the parameter α as
well. Since the number of simulation particles is not the same in
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all methods, direct comparisons are not entirely appropriate. In
stepwise constant-V and time-driven DSMC the number of
simulation particles varies with time: in coagulation it ranges
from N0 initially to N0 /2 but in breakage from N0 to 2N0. As a
result these methods tend to be faster in coagulation but slower
in breakage when compared to their counterparts. For these
reasons the reported CPU times should be understood as qualitative
indicators of the required computational effort. It can be seen that
overall, event-driven methods are faster than time-driven methods.

The algorithms studied in this paper represent four Monte
Carlo variants that are in common use for solving population
balances. All of the methods implement some method of
controlling the number of particles within predetermined
bounds and thus are capable of tracking population balances
over arbitrarily long simulation times. Event-driven methods
retain the straightforward logic of Monte Carlo and lead to
equally straightforward numerical code. An important feature of
these methods is that the time increment is not fixed as it is
given by the inverse of all rates. This is not a concern if the
simulation is a stand-alone computation. If the purpose is to
simulate a particulate population within a larger unit operation,
event-driven methods are at a disadvantage because process
simulators work with standard integrators that are time-driven.
Time-driven MC is more suitable in this case and could lead to
large scale simulations that would not only capture particulate
mechanisms but also the space evolution of PSD, boundary
conditions and even gas-particle dynamics coupling with two-
phase flow models.

5. Conclusions

Four MC methods, constant-N, stepwise constant-V, time-
driven direct simulation, and multi-Monte Carlo simulation,
were employed numerically to simulate the dynamic evolution
in a variety of mechanisms that typically appear in particulate
processes. The methods have been compared with respect to
accuracy in the distribution, accuracy in the number and mass
concentration of particles, as well as with respect to CPU
requirements. For the first time, the accuracy of MC methods
has been quantified on basis of standard deviations in
calculation of properties of particle size distribution. This
approach can be used for accuracy analysis of new and modified
MC methods. With respect to the size distribution, there is
remarkable similarity in accuracy among all four methods,
despite the fact that each method regulates differently the
number of particles in the simulation. Thus we conclude that the
error in the calculated size distribution is primarily controlled by
the number of simulation particles. The larger variability seen
with respect to the time evolution of the number or mass
concentration depends mainly on the details of how the time
increment is implemented rather than the size of the simulation
box. With regards to the computational time, event-driven
methods have an advantage over time-driven methods because
an event is by design guaranteed to happen in each step, thus
advancing the simulation further in time. The choice between
step-wise constant-V and constant-N methods may be made on
the basis of expected behavior of the particle number
concentration. If it is expected that particle number concentra-
tion increases during the process, constant-N method should
perform better than stepwise constant-V method. The situation
is reversed if the number concentration is expected to
decrease — the stepwise constant-V method would be faster
and more accurate than constant-N method. Time-driven
algorithms are more suitable in cases where the population
balance equation is to be solved within a larger process
simulator that performs explicit integrations in time. Overall,
very good accuracy can be achieved using reasonably small
numbers of simulation particles, O(103), requiring computa-
tional times of the order 102−103 s in typical desktop systems.

Notation
C Number concentration, (m−3)
E Rate of settling, (s−1)
Ctheory Number concentration in exact solution, (m−3)
KS(v) Rate of deposition onto particles of size v (m3 s−1)
kwt,i Statistical weight of particle i
N0 Initial number of simulation particles
n(v) Size distribution (m−6)
nk Number distribution of simulation particles of size

v=kv0
P Probability
Rl Specific rate of event l (m−3s−1)
S(v) Breakage rate of size v (s−1)
S0 Pre-factor of breakage rate of size v (s−1)
t Time (s)
tcoag Characteristic coagulation time (s)
tcoag,i Coagulation time of particle i (s)
tbrk Characteristic breakup time (s)
tS Characteristic surface growth time (s)
tnucl Characteristic nucleation time (s)
tE Characteristic settling time
V Mass concentration of particles (kg m−3)
Vtheory Mass concentration − exact solution (kg m−3)
v Particle mass (size) (m3)
v̄ Average particle mass (m3)
v0 Particle mass at time 0 (m3)
vk Mass of particle added to or removed from simulation

box (m3)
vS Volume of the condensing species (m3)
Vs Volume of the simulated system (m3)
vnucl Size of the nucleus (m3)
Greek letters
α Parameter controlling the time increment in time-

driven MC
β(vi,vj) Coagulation kernel between sizes vi and vj, m

3/s
β0 Pre-factor of coagulation kernel, m3/s
Γ(v|u) Fragments with size in (v, v+dv)produced from size u;

(m−3)
δvevent Change in mass due to event
Δt Time increment (s)
σd Error in size distribution
σC Error in number concentration
σV Error in mass concentration
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