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The deposition of particulate matter on filter fibers (a system of cylinders) in a laminar flow normal to their
axes has been simulated by a new Lattice Boltzmann model for two-phase flows. In the model, gas dynamics
is solved by the Lattice Boltzmann method, while the transport of solid particle is described by the cellular
automation probabilistic approach, where solid particles are constrained to move only on the same regular
nodes as the fluid particles and their motion probabilities to neighboring lattices depend on the combined ef-
fect of drag forces from fluid, Brownian diffusion, and other external forces. The Lattice Boltzmann two-phase
flow model is allowed to quantitatively simulate the filtration process of fibrous assembly, including the
steady capture efficiency and pressure drop during the filtration processes of clean fibers, the dynamic evo-
lution of the branch cluster structure, capture efficiency and pressure drop along with particle loading. The
detailed information on the particle trajectories and the dendrite structures (fractral dimension and porosity)
are obtained. Our results are in good agreement with previous theoretical predictions and experimental
observations.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Fiber filtration, which is at advantage of high capture efficiency of
submicron particle, is very widely used for air purification in coal-
fired power plants, mining engineering, cement industries, work
places and life areas. Since the fifties of last century, scientists in
this field have been developing mathematical models or carrying
out experimental investigations to predict and improve filter perfor-
mance [1–7]. However, the filtration process of suspended particles
from the airflow is very complex because it involves various deposi-
tion mechanisms of solid particles (Brownian diffusion, interception,
inertial impaction, and other mechanisms due to other external forces
such as electrostatic force and gravity), as well as the nonsteady evo-
lution of filtration efficiency and pressure drop during the filter clog-
ging. These traditional methods usually obtained some empirical or
semi-empirical formulations of penetration efficiency and pressure
drop only [8]. In order to construct the optimal fibrous structures
for high filtration efficiency (especially for particles of 0.1–1 μm),
low pressure drop and long lifetime of the filter, it is essential to ob-
tain the detailed information of a non-steady-state filtration process
(e.g., the flow fields, the history of particle trajectory, the dynamic
boundary due to particle deposition on the fibers, the interaction
among the internal two-phase flow, the fibers and deposited parti-
cles). Numerical simulation of gas–solid two-phase flow provides a
8; fax: +86 27 8754 5526.
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promising way to research the deposition of particulate matter on
filter fibers.

Conventional numerical methods, which used Navier–Stokes
equations for flow fields and Lagrangian approaches for particle mo-
tion, are usually utilized to simulate gas-particle flow in filters
[9–11]. Particular difficulties arise from the non-steady-state and
irregular surface caused by deposited particles. These conventional
numerical methods thus have to use high-resolution and adaptive
grids near the deposit and fiber, on the cost of computational efficien-
cy and precision.

Lattice Boltzmann method (LBM) is an efficient alternative for the
kind of gas–solid flows with complex and dynamic boundary condi-
tions [12–15]. The LBM provides an approach to describe fluid phase
from the perspective of mesoscopic simulation in principle [14], and
it is thus capable of obtaining complex vortex structures of turbulence
near fiber surfaces where particles are depositing. In the LBM, the
fluid phase is considered as a large number of microscopic fictitious
“fluid particles”; these fluid particles collide and migrate on the dis-
crete lattices under regulation rules (e.g., the conversation of mass
and momentum) [14]. The macroscopic characteristics of fluid mo-
tion (such as pressure, fluid density and velocity) can be obtained
through statistic calculations of the fluid particles [14]. The outstand-
ing advantages of the LBM, compared to the conventional numerical
methods, include its simple and clear physical models, inherent paral-
lelism, and capability to deal with complex and dynamic boundary
conditions [14].

Basically, it is possible to distinguish gas–solid flow models based
on the LBM among Lagrangian full-resolution-particle tracking
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approach, Lagrangian point-particle tracking approach, and cell auto-
mation probabilistic approach, depending on different ways for de-
scription of particle migration (Lagrangian tracking or probabilistic
determination) and particle volume (full resolution or point like).
As the name suggests, the Lagrangian full-resolution-particle tracking
approach views solid particle as objects with geometric boundaries
imposed on the fluid. The interaction between a “large” solid particle
and its surrounding fluid particles is calculated by summing the
transfer of momentum to the solid boundary (before and after re-
bound [16]) over all fluid boundary nodes [15]. The approach is capa-
ble of describing complex rheology of particle suspensions with high
resolution, and then exploring complex fluid–particle interaction
from the viewpoint of “true” direct numerical simulation (DNS) and
providing basic parameters and even constitutive relations for macro-
scopic simulation. However, the approach is generally trapped into
huge computational demand in cases of, for example, 10,000 particles
in suspensions [15], and thus is still out of the engineering question in
the foreseeable future.

With respect to the Lagrangian point-particle tracking approach
(we call it the LB-Lagrangian approach in the following text), solid
particle is viewed as point without volume, and the motion of each
particle is directly calculated from the Lagrangian approach of the
equation of motion under consideration of different external forces
such as drag force, gravity, and Brownian force. The point-particle as-
sumption is reasonable when the particles are smaller than the Kol-
mogorov scale of fluid phase [17]. Filippova and Hänel [18] first
proposed the LB-Lagrangian approach to describe the problems of
particle deposition in filters. The inertial-impaction-dominated cap-
ture efficiency from the approach agrees well with experimental re-
sults, and dendrite-like formations of particles under conditions of
different Stokes numbers are captured reasonably. They [18] also
noted that the interaction among changed surface and hydrodynam-
ics and accordingly particle deposition has to be considered for the
prediction of filter performance. They [18] took the view that the LB
method may be the most simple and effective method to simulate
gas–solid flow around such irregular and dynamic geometrical
boundaries. Lantermann and Hänel [19] further proposed so-called
particle Monte Carlo method to describe the trajectory of single par-
ticles by Lagrangian integration of the Langevin equation, taking
into account additional forces (van der Waals forces, electrical force,
…) as random forces due to Brownian movement. However, it is
worth noting that the LB-Lagrangian approach may lose the parallel-
ism (which is inherent to the LB methods) because fluid particles and
solid particles were not based on the same lattices.

Another LBM-based approach for fluid–solid flows was proposed
by Masselot and Chopard [12,20–22] for particle (such as snow or
sand) behavior in fluid (typically, air and water). In the approach,
the discrete point-like particles are constrained to exist only at the
same regular lattice nodes as the fluid particles of the LBM. The
state of a solid particle at a node is expressed by a Boolean variable
(as those in cell automation (CA) [23] and lattice gas automation
(LGA) [24]), an arbitrary number of point particles may exist at
each node. During a time-step, a solid particle at a node may still
stay at the original node or migrate to its nearest-neighbor node,
depending on the motion probability of the particle which is deter-
mined by the combined effect of, for example, gravity, Brownian dif-
fusion and local gas velocity. The approach is thus called cell
automation probabilistic approach. Because “continuous” fluid and
discrete granular media are modeled in terms of fluid particles and
solid particles using the same lattices, this approach is at advantages
of the convenient implementation of dynamic boundary conditions,
massively parallel computation, and complicated microscopic mecha-
nisms of solid particles (e.g., deposition, toppling, and erosion). Cho-
pard and his colleagues used the mixed LB and CA approach (we note
it LB–CA method in the following texts) to describe transport (creep-
ing, saltation, and suspension), deposition, toppling, and erosion of
snow particles in air [20], as well transport, erosion, and deposition
of sands in water [12,20,21]. The ripples formed from the bottom sed-
iments (snow or sands) and the cavity resulted from erosion around
the submarine pipelines are obtained, in agreement with the real
observations on the qualitative level. Gradoń and his colleagues
extended the LB–CA method to describe transport, deposition, and
resuspension of particular matter in fibrous filters [25,26]. The dy-
namic evolution of dendrite-like formations of particles on a single
fiber or the composites of nano- and microsized fibers is successfully
captured, and the deposition efficiency during particle loading can be
calculated. Although the LB–CA method provides a way to incorpo-
rate these complex mechanisms for particle behaviors like transport,
deposition and resuspension, toppling, and erosion by some simple
and intuitive rules, these rules are characterized by empirical or ten-
tative formulations/parameters. For example, an empirical constant
for the ratio of particle velocity and fluid velocity is set to determine
the transport probability of a particle under the action of the local
fluid flow [12,20,25,26]. In the case, the influence of fluid on particle
motion is described by a less rigorous or even wrong model. Although
the LB–CA method can obtain some reasonable pattern of deposits
through choosing appropriate characteristic parameters for particle
behavior very carefully, these empirical formulations/parameters
make the available LB–CA methods in open literatures be only on
the level of qualitative simulation.

To sum up, the LBM-based gas–solid flow models, in comparison
with conventional CFD models based on the Navier–Stokes equation
for continuous fluid, have significant advantages of easily imple-
menting complex and dynamic boundary conditions, and they are
able to consider the back-influence of dynamic boundary conditions
(that is, the changed surface structures due to particle deposition
and resuspension, toppling, and erosion will have non-negligible ef-
fects on fluid field which influences interactively the next particle
behavior). These advantages are essential for the simulation of filtra-
tion process. Among the three kinds of LBM-based gas–solid flow
models, the LB–CA method is at advantages of considering compli-
cated mechanisms of particle behavior through simple and intuitive
rules, straightforward implementation of massively parallel compu-
tation [21], and less computational demand. Nevertheless, the avail-
able LB–CA methods should be improved to describe particle
transport under consideration of combined effects such as Brownian
diffusion, drag force, and other external forces. This paper first aims
to the improvement of the existing LB–CA method in order to cor-
rectly describe particle transport among regular lattice nodes. An-
other aim of the paper is to simulate steady-state filtration process
of clear fibers and non-steady-state filtration process during filter
loading for different typical cases where either individual collection
mechanism (e.g., Brownian diffusion, or interception, or inertial im-
paction) or simultaneous several mechanisms dominate the filtra-
tion process. It is believed that these simulations are very useful
for understanding collection mechanisms and constructing optimal
fibrous filter structures.

This paper is organized as follows. In Section 2.1, we introduced a
standard Lattice-Boltzmann model for the carrying gas, where the so-
called BGK collision rule [27,28] is used. Section 2.2 described an im-
proved CA probabilistic approach for particle transport through
correct consideration of the effect of fluid on particles. Section 2.3
shows the implementation of particle deposition and dynamic
boundary conditions. In Section 3, the collection efficiencies and pres-
sure drop of clear fibers are calculated and compared with analytical
solutions or empirical formulations when one collection mechanism
(Brownian diffusion, interception, or inertial impaction) is dominant.
Section 4 presents the patterns of deposits and filtration characteris-
tics of dust-loaded fibers. The fractal dimension and porosity of den-
drites are investigated. Moreover, capture efficiency and pressure
drop of dust-loaded fiber are also included. Finally, conclusions and
outlook to future research are given in Section 5.
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2. The model

2.1. The Lattice-Boltzmann model for fluid flow

Solutions of the gas flow and potential fields are first calculated
using the LB method in term of Lattice Boltzmann–BGK (Bhatnagar–
Gross–Krook) model [29]. In the LBM, a fictitious microscopic picture
of molecular dynamics for the fluid phase is imaged, where a discrete
regular grid (lattice) in space, an explicit time-steeping in time, and dis-
crete velocities of hypothetical fluid particles are adopted. Hypothetical
fluid particles are constrained tomove only along the links of some reg-
ular lattices and collide at the nodes. The primary variables in the LBM,
in comparison with the cellular automata and lattice-gas automata, are
the so-called fluid particle density distribution function fi(x,t), each pre-
senting the probable amount of fluid particles moving with a fixed ve-
locity ei along the ith direction at each node with position x and at
discrete time t. The macroscopic hydrodynamic variables such as fluid
density ρ and velocityu can be computed as the first twomoments of fi:

ρ ¼
XQ−1

i¼0

f i; ρu ¼
XQ−1

i¼0

f iei ð1Þ

where Q is the number of discrete velocities, depending on the lattice
topology. In the present paper, a filtration process of a row of cylindrical
fibers in a laminar flow normal to their axes is considered, which can be
viewed to be two-dimensional gas–solid flows. Our LBM implementa-
tion uses the D2Q9 model [27] with nine velocities in a two-
dimensional domain with the same sampling Δx in both x- and y-
directions (shown in Fig. 1).

The evolution of the density distribution functions at each time
step is given by the discretized BGK model [27]:

f i x þ eiΔt; t þ Δtð Þ−f i x; tð Þ ¼ f eqi x; tð Þ−f i x; tð Þ� �
=τ ð2Þ

where τ is a dimensionless parameter termed the relaxation time;
x+eiΔt is a nearest node of the node with position x along the direc-
tion i; each distribution function fi corresponds to a certain velocity
vector ei (here i=0,…,8); and fi

eq is the equilibrium distribution func-
tion defined as [27]:

f eqi ¼ ραi 1þ ei·u
c2s

þ 1
2

ei·u
c2s

� �2
− u2

2c2s

" #
ð3Þ

in which αi is the fixed weighting coefficient, dependent on the length
of the corresponding lattice vector. In the D2Q9 model [27], α0=4/9,
αi=1/9(i=1,3,5,7), αi=1/36(i=2,4,6,8); cs is the local speed of
Fig. 1. Discrete velocities in D2Q9 model.
sound of the chosen LBM model, and for D2Q9 it is cs ¼ c=
ffiffiffi
3

p
with

c=Δx/Δt.
In fact, the LB Eq. (2) consists of two steps: a collision step and a

streaming step. The right and left sides of Eq. (2)correspond to the
collision and streaming step, respectively. Eq. (2) implies that the dif-
ference of the original fi(x,t) and the streamed fi(x+eiΔt,t+Δt) is re-
lated to the changes due to collisions during the motion of the fluid
particles, and the collisions redistribute the distribution function to-
ward equilibrium state fi

eq with change a rate of 1/τ. By performing
the streaming step and the collision step successively at each grid
point, the LBM algorithm proceeds. The fluid pressure field P is deter-
mined by the equation of state for a discrete space:

P ¼ ρcs
2 ð4Þ

The LBM represents a first-order explicit finite-difference discreti-
zation of the finite discrete velocity model of the Boltzmann equation
[14]. It is well known from the kinetic theory of gasses that the
Navier–Stokes equations usually used in macroscopic simulation are
solutions of the Boltzmann equation in the continuum regime [30].
Consequently, Eq. (2) can correctly reproduce the incompressible
Navier–Stokes equations with second-order accuracy in space, giving
the speed of sound cs and the kinematic viscosity of the fluid

υ ¼ c2s
2

2τ−1ð Þ: ð5Þ

It is worth noting that the filtration process is a case of the dilute
gas–solid flows and the effect of particles on the fluid (the gas
phase modification due to the presence of particles) is thus neglected.
In fact, the so-called two-way coupling effect can be considered
through an additional force (which represents the reacting drag
force and describes the interaction between the fluid and particle
phases) in the LB evolution Eq. (2)[14,31]. Furthermore, high Reyn-
olds number flows can be simulated by the LBM by introducing the
so-called Smagorinsky subgrid model to increase locally the relaxa-
tion time [32].

2.2. The cell automation probabilistic model for particle transport

Particle transport in fluids depends on the combined effects of the
fluid–particle interaction, gravity and buoyancy, and even Brownian
diffusion and electrostatic force. Masselot and Chopard [20,21] first
proposed the CA probabilistic model to describe particle transport,
where solid particles are constrained to only move on the same regu-
lar lattices as the fluid particles, and their transport probabilities to
neighboring nodes depend on the local fluid flow and other external
forces subject to solid particles. Let N(xp,t) be the number of simula-
tion particles at site xp and time t. N(xp,t) can take any nonnegative
value. The key idea of the CA probabilities model is that each of the
N(x,t) particles jumps to a neighboring node at site xp+eiΔt with a
probability pi proportional to the projection of the actual displace-
ment of the particle in the direction ei. Fig. 2 illustrates an example
of the transport rule for the D2Q9model. Let a particle locate at site xp
and time t. After a time-step Δt its new position (xp*) is xp+upΔt,
where up is the particle velocity at time t. It is noted that the time-
step is constrained to be less than the crossing time scale of solid par-
ticle to the grid, in such a way that a solid particle moves to its
nearest-neighbor node within Δt at maximum. Usually the new posi-
tion does not coincide with any node of the grid. The transport prob-
abilities of the particle awards to the east, north, west, and south
direction, i.e., p1, p3, p5 and p7, are calculated in the D2Q9 model:

pi ¼ max 0; up·ei
� � Δt

Δx

� �
¼ max 0;

Δxp
Δx

·ei

� �
; i ¼ 1;3;5;7 ð6Þ



Fig. 2. Particle transport rule in the CA probabilistic model.
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where Δxp is the actual displacement of the particle within time step
Δt, Δxp=xp*−xp=upΔt. It is clear that pi×pi+4=0 since ei=−ei+4.

The solid particle may still stay at the original node or jump to a
nearest-neighbor node, depending on the transport probabilities to
directions 1, 3, 5 and 7:

x�
p ¼ xp þ μ1e1 þ μ3e3 þ μ5e5 þ μ7e7 ð7Þ

where μi is a Boolean variable which is equal to 1 with probability pi.
Giving a typical example as shown in Fig. 2, where p1>0, p3>0,
p5=0, and p7=0. It means the particle may stay at rest with proba-
bility (1−p1)(1−p3), or jumps to east with probability p1(1−p3),
to north with probability p3(1−p1), to north-east with probability
p1p3. As for numerical implementation, two independent random
numbers from a uniform distribution in the interval [0,1], r1 and r2,
are first generated through random number generator. The following
conditions are used to determine the new position of the particle by
Monte Carlo method:

if r1 > p1 and r2 > p3; x
�
p ¼ xp

if r1 b p1 and r2 > p3; x
�
p ¼ xp þ e1Δt

if r1 > p1 and r2 b p3; x
�
p ¼ xp þ e3Δt

if r1 b p1 and r2 b p3; x
�
p ¼ xp þ e2Δt

8>>><
>>>:

ð8Þ

It is proven that the binomial scattering can be approximated by a
Gaussian distribution if the number of simulation particles is large
enough [33].

Unfortunately, the existing CA probabilistic model only estimates
roughly the actual displacement of a particle within a time step. For
example, the displacement of sand/snow particle under the action
of the local fluid flow and gravity force is Δtsw in the original model
proposed by Masselot and Chopard [20], where Δts is the time-step
associated to solid particle motion, w is velocity of solid particle,
w=u+ufall, with u the local fluid velocity and ufall the falling veloc-
ity (accounting for gravity force). The ratio Δts/Δt is set as an empir-
ical constant to describe the effect of fluid on particle motion
indirectly and qualitatively. The transport probability is thus calculat-
ed as follows [20]: pi=max(0, (Δts/Δx)(ei∙w))=max(0, (Δts/
Δt)(ei∙w)/|ei|2). Usually Δts≥Δt for efficiency, but small enough to
ensure pi is always less than 1. Obviously, particle velocity and dis-
placement here are not accurate and even not of the correct order
of magnitude. We improve the original model by quantitatively calcu-
lating the velocity and displacement of solid particles under the
combined effect of, for example, drag force from local fluid and Brow-
nian diffusion, which is necessary for the filtration processes.

Brownian diffusion has significant effect on the motion of, espe-
cially, small particles. It is well-known that the collection of submi-
cron particles by fibrous filters is dominated by the mechanism of
Brownian diffusion. Particle movement in the space due to Brownian
diffusion can be regarded as certain random walk process, where the
transition probability (which depends on diffusion coefficient (D)
and is a function of particle diameter, medium temperature and
surrounding flow velocity from the theoretical Stokes–Einstein
equation) is calculated to determine quantitatively the random
movement of particles. The transition probability, which is character-
ized by multiple integration, is usually complicated and time-
consuming in calculation [34]. Przekop et al. [25] introduced another
stochastic method to consider random (diffusional) displacement of
the solid particles in the CA probabilistic model, where the frequency,
k0, of the particle jump between the neighboring lattices are deter-
mined by diffusion coefficient D and the lattice length Δx, i.e.,
k0=D/Δx2. They chose a constant k0 from a specified Peclet number
dependent on cases. The constant k0 may diverge from real situations.
Brownian dynamic simulation is also able to depict the random be-
havior of particles [35]. On the other hand, it is feasible to introduce
Brownian force [36] or Brownian acceleration [37] in the Lagrangian
equations of motion for a particle to take Brownian diffusion into ac-
count. Lantermann and Hänel [19] introduced a time-dependent sto-
chastic acceleration term in the Langevin equation to represent the
Brownian motion of small particles. Kim [36] investigated particle be-
havior in membrane system by taking drag force, Brownian force, and
electrostatic repulsion into account. In this paper, random Brownian
force [36,38] is introduced to consider the Brownian diffusion. The
particle motion is thus described by the Newtonian equation under
consideration of drag force FD and Brownian force FB [9–11]:

dup

dt
¼ FD þ FB ¼ u−up

τp
þ ς

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
216μkBT
πρ2

pd
5
pΔt

s
ð9Þ

dxp

dt
¼ up ð10Þ

where τp is the relaxation time scale of particle, τp=ρpdp2Cc/(18 μ); μ
is the dynamic viscosity of gas; dp and ρp are particle diameter and
density respectively; Cc is an empirical correction factor called Cun-
ningham slip correction factor, here Cc=1 for simplicity; ς is zero-
mean, unit-variance independent Gaussian random number; kB is
Boltzmann constant; T is gas temperature.

In the Lagrangian particle tracking approaches, particle velocity
and position are calculated by integration of the equations of motion
for the particle. In this paper, in order to save computational time, the
particle velocity and displacement can be explicitly calculated
through integration of the equations of motions over time t succes-
sively:

u�
p ¼ up⋅ exp −Δt

τp

 !
þ uþ FB⋅τp
� �

⋅ 1− exp −Δt
τp

 ! !
ð11Þ

x�
p ¼ xp þ up−u

� �
1− exp −Δt

τp

 ! !
þ uΔt

þ Δt þ 1− exp −Δt
τp

 !
⋅τp

 ! !
⋅FB⋅τp ð12Þ

The accurate particle displacement Δxp(=xp*−xp) within the pe-
riod Δt is thus obtained. As a result, the transport probabilities of the
particle can be calculated quantitatively through Eq. (6).

The present CA probabilistic model is able to consider particle trans-
port under the action of other external forces such as gravitational

image of Fig.�2


Fig. 4. Velocity vector of flow field.

Fig. 3. Bounce-back boundary condition in the LB method.
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force and buoyancy, electrical forces and van der Waals forces, by add-
ing these forces into Eq. (9). It is also possible to take into account par-
ticle rotation by angular velocity of particles, if necessary.

Once the particle position and velocity are determined by the
model, the particle fields can be obtained by statistics of all simulation
particles over all nodes. Simulation particles are usually weighted to
represent these real particles. That is, the number, Nr(x,t), of real par-

ticles at site x and time t can be calculated by: Nr x; tð Þ ¼ PN x;tð Þ

i¼1
wi; the

velocity, up(x,t), of real particles is given by up x; tð Þ ¼ PN x;tð Þ

i¼1
wiup;i;

and other variables of particle fields can be calculated using the sim-
ilar ways, where wi and up,i are the weight and velocity of the i-th
simulation particle at site x and time t.

2.3. Dynamic boundary

As the particles deposited, the shape of fiber surface continues to
change, resulting in some dendrite-like clusters consisting of deposit-
ed particles. Both fiber and clusters serve as collectors of the coming
particles. Furthermore, the dynamic evolution of dendrites affects
the flow fields and thus the subsequent particle deposition. It is nec-
essary to consider the interaction between two-phase flow fields and
non-steady surface geometry. In the LB methods, the complex bound-
ary conditions can be dealt with very simple rules.

There are three kinds of nodes in LBM-based two-phase models:
fluid node, solid node and boundary node. Fluid particles and solid
particles within fluid nodes can evolve according to Eqs. (2) and
(6), respectively. Solid nodes are occupied by rigid wall (here fibers)
or deposited particles, and it is impossible that fluid particles and
solid particles enter into solid nodes. As suggested by Chopard et al.
[22], up to Nthres solid particles can accumulate on a solid node (the
value of Nthres depends on diameter of solid particles, lattice length
Δx and real size of computational domain). If the number, Ndepo, of
deposited particles in a node is less than Nthres, the node is viewed
as boundary node. In a boundary node, solid particles are limited to
rest, and fluid particles are not affected by the presence of these
solid particles. It is assumed that any particle is stopped and deposit-
ed once it contacts fiber surface or a previously deposited particle
(that is, if its next position is a solid node or a boundary node). If
the next position is a solid node, the current node of the particle
will become a boundary node from a fluid node, and Ndepo=1. If
the next position is a boundary node, N*depo=Ndepo+1. Once
N*depo is equal to a specified Nthres, the node is altered from “boundary
node” to “solid node”. The solidification process implies a dynamically
changing boundary condition for the two-phase flows.

Fluid particles within fluid nodes or boundary nodes may collide
with rigid obstacles or walls which are represented by solid nodes.
Bounce-back boundary condition (bbc) with second-order accuracy
is adopted, saying, fluid particles bounce back from where they
came (as shown in Fig. 3). The bbc expression is given by:

f−i x0; tð Þ ¼ f i x0; tð Þ ð13Þ

3. Capture efficiency and pressure drop of clean fibers

3.1. Flow field

The two-dimensional computational domain is a square with side
length of h, and a cylinder with diameter df representing the fiber is
placed in the regional center, df/h=1/4, as shown in Fig. 4. The direc-
tion of flow carrying particles is perpendicular to the cylinder axis.
Upper and lower boundaries are considered to be periodic, that is, a
fluid particle or a solid particle moving out the domain from the
upper or lower boundary will enter into the domain from the oppo-
site boundary at once. The evolution of distribution function under
the periodic boundary conditions is given by:

f i 0; t þ Δtð Þ ¼ f ′
i
h; tð Þ; f i h; t þ Δtð Þ ¼ f ′

i
0; tð Þ ð14Þ

where superscript “'” represents distribution function after colliding.
In such a way, a system of parallel cylinders in a flow normal to
their axis is considered. 256×256 nodes are chosen to represent the
computational domain, and the grid resolution is proved to be good
enough to obtain reliable flow fields.

The inlet velocity of fluid is constant: u(y)=u0, and it is consid-
ered that the initial velocity of solid particles in the inlet is same to
the fluid velocity. In the outlet, the flow field is regarded as fully de-
veloped, i.e., ∂u/∂x=∂v/∂x=0. Non-equilibrium extrapolation
scheme is used here to deal with inlet and outlet boundary conditions
[39]. The basic idea is to decompose the distribution function at the
boundary node into its equilibrium and non-equilibrium parts and
then to approximate the non-equilibrium part with a first-order ex-
trapolation of the non-equilibrium part of the distribution at the
neighboring fluid node [40]:

f i xbð Þ ¼ f eq
i

xbð Þ þ f i xfð Þ−f eq
i

xfð Þ
h i

ð15Þ

image of Fig.�4
image of Fig.�3


Fig. 6. Capture efficiency in Brownian-diffusion-dominated cases: (a) vs Pe; (b) vs Pe−2/3.

Fig. 5. Typical particle trajectories in Brownian-diffusion-dominated cases.
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where xf is the nearest neighbor fluid node of boundary node
xb(xf=xb+eiΔt).

Eq. (16) presents the error of simulation results. The flow field is
considered as stable when error b10−5.

error ¼
∑
j;i

u�
j;i−uj;i

			 			
∑
j;i

u�
j;i

			 			 ð16Þ

where uj,i is the fluid velocity of a node indexed by j in y dimension
and i in x dimension. Once the flow field reaches stable state
(a steady-state velocity distribution is shown in Fig. 4), solid particles
with a low volume fraction of 0.01 are injected from the entrance. The
initial node of a solid particle is random.

The capture efficiency and pressure drop of loaded filters are relat-
ed to not only the loaded mass but also the performance of clear fi-
bers. We first simulated particle capture process of clear fibrous
filters using the LB–CA method in the section. In the following cases,
particles will “disappear” if they deposited on fibers, so the shape of
fiber does not change and the fiber keeps “clean”.

3.2. Capture efficiency of clean fiber

Fiber capture efficiency can be calculated as follows:

η ¼ G1−G2

G1
� 100% ð17Þ

where G1 is the total number of solid particles entering the computa-
tional domain from the inlet per unit time (monodisperse particles
are considered in this paper); G2 is the total number of particles leav-
ing the computational domain from the outlet per unit time.

Three main mechanisms for particle collection by fibers are con-
sidered: Brownian diffusion, interception, and inertial impaction. It
is well known that the capture efficiency due to Brownian diffusion
is related to Peclet number Pe, Pe=Udf/D, where D is the Brownian
diffusion coefficient, D=kBT/(3πμdp); U is average velocity for the
stream; df is the fiber diameter; The interception efficiency depends
on fiber structure which is characterized by the ratio of particle size
and fiber equivalent diameter, namely the intercept coefficient
R=dp/df,; Stokes number (St=ρpdp2U/(18μdf), where ρp is the parti-
cle density) has crucial effects on inertial-impaction-dominated col-
lection efficiency. Generally speaking, fibrous filter has high capture
efficiencies for large particles (generally larger than 10 μm with
large St number, and the inertial impaction mechanism dominates)
and small particles (generally less than 0.01 μm with large D and
small Pe number, and the Brownian diffusion mechanism dominates).
However, intermediate particles (especially fine particles in range of
0.1–1 μm, who are situated in “Greenfield gap” range [41]) are hardly
captured by the fibers because the two important collection mecha-
nisms, Brownian diffusion and inertial impaction, have the minimum
effect on those particles and the contribution of interception mecha-
nism on capture efficiency is also weak. By adjusting the three dimen-
sionless numbers (Pe, R, and St), we can study the fiber capture
efficiency when an individual capture mechanism is dominant. The
numerical results of the LB–CAmodel can be quantitatively compared
with these of the existing empirical/semi-empirical/analytical formulas.

We first simulated the Brownian-diffusion-dominated collection
processes, where particle size is comparatively small and R is set as
1/64. Dimensional analysis of external forces acting on particles
shows that the Brownian force is much larger than the drag force.
Random Brownian diffusion of particles is much stronger than the
convection diffusion. The trajectories of particles are relatively chaot-
ic, and some of the particles can even randomly move to the leeward
of the fiber and deposit after colliding and contacting with the fiber
(Fig. 5). The capture efficiency from the numerical simulation agrees
well with these predictions by some existing theoretical formulas
(Stechkina and Fuchs [42], Lee and Liu [43]), as shown in Fig. 6a.
When Pe number ranges from 1000 to 10000, the results are all
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Fig. 8. Typical particle trajectories in inertial-impaction-dominated cases.
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within two analytical solutions, although there is a certain deviation
with any theoretical prediction. It is found that when Pe number is
comparatively smaller (from 1000 to 5000, where it is deduced that
the contribution of Brownian diffusion mechanism on capture effi-
ciency is comparatively stronger), the simulation results fit the two
formulas better, and for larger Pe number (within the range of 5000
to 10,000) the numerical results are slightly higher than theoretical
predictions. In fact, although the Brownian diffusion mechanism
dominates under the condition, the drag force of fluid on the particles
is still considered in the simulation (namely, particles still have a
small inertia), especially when Pe is large (5000bPeb10,000). That
is, the obtained capture efficiency is actually the overall efficiency of
the three capture mechanisms considered, while the theoretical for-
mulas only consider the capture efficiency from Brownian diffusion.
It is noted that the capture efficiency dominated by the Brownian dif-
fusion mechanism is proportional to Pe−2/3 (see Fig. 6b) in general,
which is consistent with the classical theory [42].

For larger particles, St is larger. Dimensional analysis shows that
the Brownian force on a particle is far less than the drag force from
the fluid. The particle trajectory at initial stage is nearly consistent
with the fluid path. However, as particles are approaching the fiber,
particles apparently deviate from the path of the fluid because of
their own larger inertia, resulting in particles' head-on impaction on
the windward of fiber (see Fig. 8). In these cases inertial impaction
mechanism dominates, the relationship between capture efficiency
and St number is presented in Fig. 7. The agreement between the nu-
merical results and Brown's empirical formula (for low St condition)
[44] is good. When St number becomes larger, the capture efficiency
are also increasing. It is shown in Fig. 7 that the obtained capture ef-
ficiency deviates slightly from the existing prediction when St=0.05,
0.1, 0.2. This is because the inertia of particles with low St is not in-
tense enough and the particles still follow the trajectories of fluid par-
ticles to a certain extent. Therefore, interception mechanism plays
some roles in this condition. When St number continuously increases,
the dominant role of inertial impaction mechanism becomes stronger
and stronger.

Interception mechanism affects the capture process of particles of
all sizes, however the contribution on the overall capture efficiency is
comparatively little in general. With respect to intermediate particles,
the Brownian diffusion is relatively weak, and their inertia is also rel-
atively low. Therefore, the interception mechanism is highlighted to
be the most important collection mechanism. In these cases, the par-
ticle trajectories in the whole flow field basically correspond to the
fluid streamlines (see Fig. 10). When the particles move close to the
fiber, the particles may impact the fiber and be intercepted if the dis-
tance between particle centroid and fiber wall is less than or equal to
Fig. 7. Capture efficiency in inertial-impaction-dominated cases.
the particle radius. In these simulations, the fiber diameter is adjust-
able and the particle diameter is fixed, in such a way that the variable
R is obtained to study the relationship between R and the capture
efficiency. As shown in Fig. 9, the simulation results correspond
with these existing theoretical formulas of Lee and Liu [45] and Lee
and Gieseke [46] very well.

3.3. System pressure drop

Pressure drop ΔP across a filter is another important parameter of
fiber filters. It depends on the thickness df of the filter, the air viscosity
μ, the incoming flow velocity U, the fiber volume fraction α, and
other variables. Pressure drop ΔP can be related to drag force FD on
a unit length of a single fiber oriented transverse to the flow as [8]:
ΔP=FDdf/A, where A is the cross-sectional area, A=h2. Dimension-
less drag force F⁎ is defined as: F⁎=FD/(μU).

When the Reynolds number Re(=Udf/ν) is less than 1.0, the sys-
tem pressure drop are nearly constant and independent of the
Reynolds number [8]. It is mainly related to the volume fraction
of fiber. In our simulation, the fiber diameter is small enough
and Re=0.2. There are two theoretical formulas to describe the
Fig. 9. Capture efficiency in interception-dominated cases.
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Fig. 10. Typical particle trajectories in interception-dominated cases.

118 H. Wang et al. / Powder Technology 227 (2012) 111–122
relationship between the dimensionless drag force and fiber volume
fraction α.

Miyagi's formula for an isolated row of parallel fibers is [47]:

F� ¼ 4π − ln
df
2h

−1:33þ π2

3
df
2h

� �2
" #−1

ð18Þ

Kuwabara's Formula is expressed as [8]:

F� ¼ 4π −0:5 lnα−0:75−0:25α2 þ α
h i−1 ð19Þ

where the fiber volume fraction α=πdf2/(4 h2).
We obtained dimensionless drag forces over five fiber volume

fractions by changing the fiber diameter. F⁎ increases as α increases,
which is very close to the predicted results of the two expressions,
shown in Fig. 11.
Fig. 11. Relationship between dimensionless drag force and filter volume fraction.
4. Dynamic evolution in capture process

In real cases, particles will deposit on the surface of the fiber,
which will change the shape of fiber and thus affect the flow field.
On the other hand, the formed dendrite-like clusters will have signif-
icant effect on capture efficiency and pressure drop. It is necessary to
investigate the dynamic formation of dendrite-like clusters. In the fol-
lowing simulations, flow fields and particle fields are both calculated
in each time step in order to capture the characteristics of the non-
steady processes. Several important parameters, fractal dimension,
porosity, capture efficiency, and pressure drop, of the dust-loaded fi-
bers are calculated.

4.1. Dynamic evolution of deposition patterns dominated by individual
capture mechanism

Kanaoka et al. [48] presented the relationship between deposition
patterns and filtration condition (in terms of the non-dimensional fil-
tration parameters Peclet number Pe and Stokes number St) by Monte
Carlo simulation for the growing processes of particle dendrites on a
fiber in Kuwabara's cell. The three extreme conditions, Pe=0,
Pe=∞ and St=0, St=∞, are capable of representing predominant
Brownian diffusion, interception and inertial impaction, respectively
[49]. Pure Brownian diffusion leads to an isotropic distribution of par-
ticles around the fiber with relatively open pore structure, and the in-
terceptionmechanism results in two striking dendrites located on 45°
and 135° of cylinder surface and growing up along the opposite direc-
tion of flow steam, and the inertial collision mechanism makes the
particles deposit on the windward of fiber. These deposition patterns
have been observed experimentally. The LB–CA model provides the
detailed knowledge on the dynamic evolution of dendrites, as
shown in Fig. 12. Fairly good agreement in shape of dendrites is
obtained with reference results. The LB–CA model is able to capture
the non-steady-state filtration process correctly.

Factually, when Brownian diffusion is dominant (that is, Pe is very
small) the Brownian force FB is far larger than the drag force (Eq. 9),
resulting in a very stochastic trajectory of particles (see Fig. 13(a)).
Particles deposited at any position of surface around the fiber. Later
on, particle deposition occurs on the existing dendrites around the
fiber, leading to an isotropic distribution of particles around the
fiber with relatively open pore structure. If Pe becomes very large
and St is very small, Brownian force of particles is negligible and par-
ticles fully follow the steamline of fluid (Fig. 13(b)), resulting in par-
ticle deposition in two special positions of windward cylinder
(located on 45° and 135° of cylinder surface) and growing up along
the opposite direction of flow stream. It is obvious that the dendrites
are able to capture the incoming particles. It is noted that some parti-
cles deposited on the leeward due to Brownian diffusion (in this case,
Pe=∞ and St=2.7×10−6). With regard to predominant dominant
inertial impaction mechanism, very large St means particles have
very large inertia and cannot deviate from their original direction,
leading to compact structures facing the flow (see Fig. 13(c)). It is
noted that the trajectories of particles, and factually, fluid streamlines
are different from these shown in Figs. 5, 8 and 10, which correspond
to the filtration processes of clean fibers. It is because the formed den-
drites influence the flow fields and then the particle trajectories.

4.2. Fractal dimension of dendrites by various capture mechanisms

Fractal dimension (Df) is introduced to investigate the growth of
dendrites. Fractal dimension can measure irregularity of complex ob-
jects, and it can reflect the effectiveness of space possession. Box
counting method is used here to calculate fractal dimension of den-
drites during the clogging processes.

As shown in Fig. 14, during the early stage of dendrite formation (the
number of deposited particles is less than 400), fractal dimensions
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Fig. 12. Dynamic evolution of deposition patterns by the LB–CA model.
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dominated by different capture mechanisms are almost same, increas-
ing from 1 to 1.25 for the 2-dimensional cases. Then, different trends
occur because of various deposition patterns. With respect to predomi-
nant Brownian diffusion mechanism, Df increases continuously, almost
showing a linear growth trend. This is because particles could deposit
in any position around the fiber and then occupy the space more effec-
tively. Under the predominant role of interceptionmechanism,Df keeps
nearly invariant or slightly reduces when the number of deposited par-
ticles is 400–500; thenDfincreases linearly. This is because the dendrites
mainly grow along their longitudinal direction at 45° and 135° of cylin-
der surface during the period of 400–500 deposited particles; then, the
particles begin to deposit on the front of two main dendrites, resulting
in the linear increasing of Df. When inertial collision mechanism domi-
nates, Df fluctuates around 1.35 along with the capture process, which
illuminates that the irregularity of dendrites does not change anymore.

4.3. Porosity of dendrites by various capture mechanisms

Porosity is another characteristic of dendrites. The average poros-
ity is usually defined as following:

ε ¼ 1−
Xn
i¼1

Vi=V ð20Þ

where Vi is the volume of the i-th particles, V is the total volume of den-
drites, n is the number of deposited particles. Usually, the porosity is ob-
viously different in the radial direction. In this paper the distribution of
porosity over different particle layer is obtained. Particles are sphere
and monodisperse, so the dendrites can be divided into many layers,
as shown in Fig. 15. Porosity of i-th layer can be expressed as:

εi ¼ 1−
ni·Vp

Vlay;i
ð21Þ

where ni is particle numberwithin i-th layer, Vp is the volume of particle
and Vlay,i is the total volume of the i-th layer.

Fig. 16 presents the porosity distribution of dendrites when individ-
ual capture mechanism is dominated. Generally speaking, the porosity
is lower at lower layer and higher at upper layer; the porosity first de-
creases then increases and finally approaches to steady along the in-
creasing of particle layers; the porosity of the first layer is usually
higher than that of other layers, except the case of predominant Brow-
nian diffusion; below the fifteenth layer the Brownian-diffusion-
dominated porosities are less, and the porosities in predominantly iner-
tial impactionmechanism are larger than the other two at the late stage
(above the 15th layer). These observations are reasonable throughout
understanding the nature of different capture mechanisms and consid-
ering the famous "shielding" effect of the previously deposited particles.
The results presented in Figs. 12–14, and 16 are consistent.

4.4. Capture efficiency and pressure drop of dust-loaded fibers

The growth of dendrites results in the expansion of capture range
and the increase of pressure drop and capture efficiency of fibers.
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Fig. 13. Typical particle trajectories during the clogging processes: (a) predominant
Brownian diffusion; (b) predominant interception; (c) predominantly inertial impaction.

Fig. 14. Fractal dimension vs the number of deposited particles during the clogging
processes.
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Kasper et al. [50] obtained a formula through experiments to charac-
terize the raising of capture efficiency and the mass of loaded parti-
cles. In our simulation, the following parameters are chosen:
St=0.3, dp=1.3 μm, df=30 μm, ρp/ρf=764.3. Our simulation results
agree well with the model predictions of Kasper et al. (see Fig. 17),
which further validates the ability of the LB–CA model for the filtra-
tion processes of not only clean fibers but also dust-loaded fibers.

There is an empirical model for pressure drop of dust-loaded fi-
bers [51–53]:

ΔP ¼ 64μUd
α′
� �3=2

1þ 56 α′
� �3
 �

d;2f
α′ ¼ K2

dα;d
′
f ¼ Kddf ;Kd ¼ 1þWd= αρph

� �

8>>>><
>>>>:

ð22Þ

where Kd is the dust-loaded coefficient, Wd is the loaded mass of unit
area. The dimensionless drag force can be defined as: F*/F0*=ΔP/ΔP0,
where ΔP0 is the pressure drop of a clean fiber. Fig. 18 presents the
dynamic evolution of pressure drop during the clogging process. It
looks the empirical model overpredicts the pressure drop when the
loaded mass is increasing.

5. Conclusions

The Lattice Boltzmann-cell automation model offers a useful tool
for description of the gas–solid flows, where gas dynamics is solved
Fig. 15. Schema of deposition layers.
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Fig. 16. Porosity distribution in thickness direction. Fig. 18. Pressure drop of dust-load fiber.
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by the LB method while the solid particle motion is described by
the CA probabilistic approach. Different from the traditional LB-
Lagrangianmodel, solid particles in the lattice Boltzmann-cellular auto-
mationmodel are constrained to onlymove on the same regular lattices
as the fluid particles, and their transport probabilities to neighboring
nodes depend on the local fluid flow and other external forces subject
to solid particles. In the Lattice Boltzmann-cellular automation model,
the interaction between gas–solid flow and complex and unsteady geo-
metric boundary can be easily realized. However, the existing Lattice
Boltzmann-cellular automation model is able to describe particle be-
haviors only on the level of qualitative simulation because some empir-
ical or tentative formulations/parameters are introduced so that the
effect of fluid on particle transport is roughly estimated. In this paper,
the Lattice Boltzmann-cellular automation model is for the first time
improved to describe particle transport under consideration of com-
bined effects such as Brownian diffusion, drag force, and other external
forces. The actual displacement of a particle within a time step is accu-
rately calculated from the Lagrangian equations of motion for a particle,
in such away that the transport probabilities of a solid particle to neigh-
boring nodes is determined by the ratio of its actual displacement on a
lattice direction and the lattice length of the direction.

The Lattice Boltzmann-cellular automationmodel is used to describe
the steady and unsteady filtration process, including the steady capture
efficiency and pressure drop during the filtration processes of clean fi-
bers, the dynamic evolution of the branch cluster structure, capture ef-
ficiency and pressure drop alongwith particle loading. Our results are in
Fig. 17. Capture efficiency vs loaded particles number.
good agreement with previous theoretical predictions and experimen-
tal observations. The Lattice Boltzmann-cellular automationmodel pre-
sented in this paper is able to quantitatively describe the filtration
process, owing to correct consideration of fluid–particle interaction.
The filtration processes of clean fibers or dust-loaded fibers are simulat-
ed when only one capture mechanism (Brownian diffusion, intercep-
tion, or inertial impaction) predominates (although the three capture
mechanisms have either strong or weak effects on the filtration pro-
cesses in our simulation). The detailed information on the particle tra-
jectories and the dendrite structures are obtained. An isotropic
distribution of particles around the fiber with relatively open pore
structure is formed for the diffusion-controlled deposition; when inter-
ception mechanism dominates, the structure of dendrites becomes
more branched and open; particles with larger inertia collide with the
windward of fibers, resulting in a dendrite with compact structure
(steady fractal dimension and lower porosity).

This paper only considered the filtration process of single fiber or a
row of cylindrical fibers in a laminar flow normal to their axes. These
cases can be viewed to be two-dimensional gas–solid flows. The reliable
predictions will help construct the optimal fibrous filter structures, and
provide basic model parameters and constitutive equations for macro-
scopic modeling of penetration and press drop. However, it should be
mentioned that in the real case of fibrous assembly, in addition to single
fiber theory, size and shape of pores defined by the fibrous assembly as
well the orientation of fibers play a vital role in particle filtration. Cap-
turing by filter media can also be distinguished as surface and depth fil-
tration. As for these real cases, three-dimensional simulation should be
considered. The Lattice-Boltzmann gas–solid flowmodel is able to deal
with complex and dynamic boundary conditions, and is thus a promis-
ing candidate for numerical simulation of particle filtration by real
fibrous assembly.
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