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a  b  s  t  r  a  c  t

The  compositional  distribution  within  aggregates  of  a  given  size  is  essential  to  the  functionality  of com-
posite  aggregates  that  are  usually  enlarged  by rapid  Brownian  coagulation.  There  is  no analytical  solution
for the  process  of  such  two-component  systems.  Monte  Carlo  method  is an  effective  numerical  approach
for  two-component  coagulation.  In  this  paper,  the differentially  weighted  Monte  Carlo  method  is  used
to  investigate  two-component  Brownian  coagulation,  respectively,  in the  continuum  regime,  the  free-
molecular  regime  and  the  transition  regime.  It  is  found  that  (1) for Brownian  coagulation  in  the  continuum
regime  and  in  the  free-molecular  regime,  the  mono-variate  compositional  distribution,  i.e.,  the  number
density  distribution  function  of one  component  amount  (in the  form  of volume  of  the  component  in  aggre-
gates)  satisfies  self-preserving  form  the same  as  particle  size  distribution  in  mono-component  Brownian
coagulation;  (2)  however,  for  Brownian  coagulation  in  the  transition  regime  the  mono-variate  composi-

tional  distribution  cannot  reach  self-similarity;  and  (3)  the  bivariate  compositional  distribution,  i.e., the
combined  number  density  distribution  function  of  two  component  amounts  in  the  three  regimes  satis-
fies  a  semi  self-preserving  form.  Moreover,  other  new  features  inherent  to aggregative  mixing  are  also
demonstrated;  e.g., the  degree  of  mixing  between  components,  which  is  largely  controlled  by  the  initial
compositional  mass  fraction,  improves  as aggregate  size  increases.

© 2011 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of
 Sciences. Published by Elsevier B.V. All rights reserved.

c
. Introduction

Multi-component Brownian coagulation is ubiquitous in
ature and in engineering, e.g., nanocomposite ceramic powders
Al2O3/TiO2), with special properties such as superconductivity,
uperparamagnetism, or high catalytic activity, produced through
rownian coagulation from a mixture of nanoparticle precursors
f functional molecular-scale monomers (Pratsinis, 1998). Insight
nto the evolution of compositional distribution is very useful to
ptimize the synthesis process of nanoparticles while tailoring the
unctional particles, typically via the gas phase method at high tem-
erature. Brownian coagulation of a two-component non-reactive

ystem is obviously the most basic, and the most important case.
patially homogeneous two-component coagulation processes are
escribed by the following bivariate population balance equation
PBE) which is an extension of Smoluchowski’s equation for one-
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omponent coagulation (Lushnikov, 1976):

∂n(vx, vy, t)
∂t

= 1
2

∫ vx

0

∫ vy

0

ˇ(vx − v′
x, vy − v′

y, v′
x, v′

y, t)

×n(vx − v′
x, vy − v′

y, t)n(v′
x, v′

y, t)dv′
xdv′

y
(1)

− n(vx, vy, t)

∫ ∞

0

∫ ∞

0

ˇ(vx, vy, v′
x, v′

y, t)

×n(v′
x, v′

y, t)dv′
xdv′

y.

The underlying nature of Eq. (1) is a two-component coagu-
ation event between particle A of state (vx,vy) and particle B of
tate (v′

x, v′
y) to result in a new particle C of state (vx + v′

x, vy + v′
y)

nd the death of particles A and B. Here vx and vy are the vol-
me of x-component and y-component, respectively, within an
ggregate having volume of vx + vy; n(vx,vy,t) is the number density

unction at time t, such that n(vx,vy,t)dvxdvy represents the num-
er concentration of particles in the size range of x-component,
x to vx + dvx, and the size range of y-component, vy to vy + dvy;
(vx, vy, v′

x, v′
y, t) is the coagulation rate coefficient between par-

ngineering, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
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Nomenclature

C′ total coagulation rate of a simulation particle,
m−3 s−1

d particle diameter of raindrop, �m
m particle mass
M total particle mass
n number density function, m−3

N total particle number, m−3

v particle volume
w number weight

Greek letters
˛ multiplicative constant
ˇ coagulation kernel, m3/s
� dimensionless particle volume
� dimensionless particle size distribution
� characteristic coagulation time scale

Subscripts
0 initial condition
i, j indices of simulation particles
min  minimum value
max  maximum value
p, q a section of compositional distribution
p particles
x, y component style

Superscripts
co continuum regime
fm free-molecular regime
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tr transition regime

icles A and B. In this study, the coagulation kernel is considered
omposition-independent. With respect to Brownian coagulation
etween particles i (volume vi, diameter di and mass mi) and j (vol-
me  vj, diameter dj and mass mj), its kernel is characterized by
hree widely used formulas, depending on the ratio of the mean
ree path (�) of gas molecule to particle radius (d/2), that is, the
nudsen number, Kn = 2�/d.

In the continuum (Kn ≤ 0.1) and near-continuum (0.1 < Kn ≤ 1)
egime (Friedlander & Wang, 1966):

co
ij = 2kBT

3�
(di + dj)

(
Ci

di
+ Cj

dj

)
. (2)

In the free-molecular regime (Kn > 10) (Lee & Chen, 1984):

fm
ij =

(
3

4�

)1/6
(

6kBT

	p

)1/2

(v1/3
i

+ v1/3
j

)
2
√

1
vi

+ 1
vj

. (3)

In the transition regime (1 < Kn ≤ 10) (Fuchs, 1964):

tr
ij

= 2�(di + dj)(Di + Dj)

(
di + dj

di + dj + 2(g2
i

+ g2
j
)
1/2

+ 8(Di + Dj)

(di + dj)(c̄2
i

+ c̄2
j
)
1/2

)−1

, (4)

here

i = 1 + �

di

[
2.493 + 0.84 exp

(−0.435di

�

)]
, (5)

(
8kBT

)1/2
¯ i =
�mi

, (6)

i = 1
3dili

[(di + li)
3 − (d2

i + l2i )
3/2

] − di, (7)

u
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i = 8Di

�c̄i
, (8)

i = kBT

3��di

[
5 + 4Kni + 6Kn2

i
+ 18Kn3

i

5 − Kni + (8 + �)Kn2
i

]
. (9)

In Eqs. (2)–(9),  kB is the Boltzmann constant; T is the absolute
emperature; � is the gas viscosity, 	p is the particle density; Ci is
he Stokes–Cunningham slip correction factor for considering the
lippage of gas molecules around particle i; Di is the diffusion coef-
cient for particle i; c̄i is the velocity of particle i, gi is the transition
arameter of particle i.

The numerical solution of the bivariate PBE (Eq. (1)) is gen-
rally very challenging due to the double integral and nonlinear
ehavior of the equation. There are several analytical solutions
or the two-component coagulation under considerable simplifi-
ations of coagulation kernels (e.g., constant (Gelbard & Seinfeld,
978; Laurenzi, Bartels, & Diamond, 2002; Lushnikov, 1976), sum
Fernandez-Diaz & Gomez-Garcia, 2007; Laurenzi et al., 2002),
nd product (Laurenzi et al., 2002)) and initial compositional
istributions (e.g., an initially monodisperse distribution of each
omponent or an initially exponential distribution of each com-
onent). However, once Brownian coagulation kernels for real
rocesses are considered, there exists no analytical solution for
wo-component systems and, worse still, the inability of conven-
ional numerical methods makes it difficult to simulate the detailed
volution of compositional distributions. A noteworthy work in
his field was  contributed by Matsoukas, Lee, and Kim (2006),
nd Lee, Kim, Rajniak, and Matsoukas (2008).  They built up the-
retical models to obtain the rate and degree of two-component
ggregative mixing as a function of aggregate size and time; and
hey also used constant-number Monte Carlo method to solve
he two-component PBE for Brownian coagulation kernels in the
ontinuum regime and in the free-molecular regime, respectively.
heir theoretical models and numerical approaches could be used
o determine the distribution of components within aggregates, to
uantify the degree of mixing, and to optimize blending of compo-
ents. Nevertheless, some basic features of the mixing process of
wo-component Brownian coagulation, especially in the transition
egime, are still unresolved; furthermore, the constant-number
ethod demonstrates undesirable statistical noise in composi-

ional distributions and is not able to track the compositional
istributions over the full spectrum, in part due to the methodolog-

cal nature that uses equally weighted simulation particles but also
ue to the methodological scheme that does not specify how the
imulation particles should be distributed over the size and compo-
itional spectra. Thus, it is highly necessary to use robust numerical
ethods to investigate two-component Brownian coagulation in

he three regimes and to provide insight into some characteristics
nherent to Brownian aggregative mixing of two components.

We have proposed a differentially weighted Monte Carlo
DWMC) method (Zhao, Kruis, & Zheng, 2010) for two-component
oagulation processes, which has been proven to be efficient and
recise. Different from conventional MC methods, the DWMC
ethod tracks differentially weighted simulation particles on

he basis of a new probabilistic rule for coagulation between
wo differentially weighted simulation particles, and adopts a
omponent-dependent shift action to restrict the number of sim-

lation particles for each size interval of each component space
ithin prescribed bounds during simulation. This paper briefly

ntroduces the DWMC  method and then utilizes it to simulate the
wo-component Brownian coagulation.
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. Differentially weighted Monte Carlo (DWMC) method for
wo-component coagulation

When simulating two or more internal variables of particles
e.g., in this paper, two chemical compositions), conventional
eterministic methods such as the method of moments (McGraw

 Wright, 2003) and sectional method (Kim & Seinfeld, 1990) are
ormulated by complicated mathematical equations, but could not
eal with the innate fluctuations for multi-component coagulation
Laurenzi et al., 2002). And more unfortunately, the conventional
eterministic methods may  not be valid for long time periods, when
nly several particles acquire enough mass to become larger than
hat of the rest of the population (Alfonso, Raga, & Baumgardner,
008) for complete coagulation to occur (Laurenzi et al., 2002).
ortunately, stochastic methods (Kruis, Maisels, & Fissan, 2000;
ee et al., 2008; Maisels, Kruis, & Fissan, 2002; Matsoukas et al.,
006; Sun, Axelbaum, & Huertas, 2004), which directly simulate
he dynamic evolution of a finite sample of the particle population
sing Monte Carlo (MC) technique, are capable of simulating multi-
omponent population balances in a simple and straightforward
anner.
We have proposed the DWMC  method for particle coagulation

n monovariate systems (Zhao, Kruis, & Zheng, 2009; Zhao & Zheng,
009), and then extended it to two-component coagulation pro-
esses (Zhao et al., 2010). The robust MC  is briefly presented as
ollows:

1) Simulation particles are differentially weighted according to
initial compositional distributions. First, two individual com-
positional spectra are respectively divided into intervals by
laws which can be freely adapted to the problems to be solved,
to result in a sectionalized two-dimensional space of com-
positional distribution. With respect to a section (p,q) in the
space, it represents a state (vx,p,vy,q) of particles having x-
component volumes between v−

x,p and v+
x,p and y-component

volumes between v−
y,q and v+

y,q, and the number concentration
of these particles is n(vx,p, vy,q, 0) (v+

x,p − v−
x,p) (v+

y,p − v−
y,p). These

real particles are considered to have similar dynamic behavior
and are represented by a certain number of weighted simu-
lation particles. The mean weight of simulation particles for
section (p,q) is thus calculated as:

w̄pq(vx,p, vy,q) = n(vx,p, vy,q, 0)(v+
x,p − v−

x,p)(v+
y,q − v−

y,q)V
Ns(vx,p, vy,q)

,  (10)

where Ns(vx,p,vy,q) is the number of simulation particles located
at section (p,q), V is the volume of the simulated system. In the
DWMC  method, Ns is prescribed to be more than a fixed mini-
mum  number Ns,min but less than a maximum number Ns,max.

if wi /=  wj,

⎧⎪⎪⎨
⎪⎪⎩

w∗
i

= max(wi, wj) − min(wi, wj), m∗
i

= mk|wk

v∗
x,i

= vx,k|wk=max(wi,wj), v∗
y,i

= vy,k|wk=max(wi,w

w∗
j

= min(wi, wj), m∗
j

= mi + mj, v∗
j

= vi + v
v∗

x,i
= vx,i + vx,j, v∗

y,i
= vy,i + vy,j,

if wi = wj,

⎧⎪⎪⎪⎨
⎪⎪⎪

w∗
i

= wi

2
,  m∗

i = mi + mj, v∗
i = vi + vj,

v∗
x,i

= vx,i + vx,j, v∗
y,i

= vy,i + vy,j,

w∗
j

= wj
,  m∗

j = mi + mj, v∗
j = vi + vj,
Sections where number density of real particles is high can thus
be designated to have a certain number of simulation parti-

⎩ 2
v∗

x,i
= vx,i + vx,j, v∗

y,i
= vy,i + vy,j,
gy 9 (2011) 414– 423

cles having larger weight values than sections where number
density is low.

2) An adjustable time step is determined from local mean-field
coagulation rate:


t  = pNst∑Nst
i=1(VC ′

i
)
, (11)

where empirical parameter p is set around 2/Ns t− 0.05; Nst is
the total number of simulation particles in the system; C ′

i
(with

unit of m−3 s−1) is the total coagulation rate of simulation parti-
cle i. C ′

i
is calculated from the probabilistic coagulation rule for

coagulation event between two differentially weighted simu-
lation particles (Zhao et al., 2009; Zhao & Zheng, 2009). In this
rule, for a coagulation event between simulation particles i and
j, it is imagined that each real particle from i undergoes a real
coagulation event with a probability of min(wi,wj)/wi, and each
real particle from j does so with a probability of min(wi,wj)/wj,
where wi and wj are the private weights of i and j, respectively.
C ′

i
is thus calculated as

C ′
i = 1

V2

Nst∑
j=1,j /=  i

[
2ˇijwj max(wi, wj)

wi + wj

]
= 1

V2

Nst∑
j=1,j /=  i

ˇ′
ij, (12)

where ˇij is the coagulation kernel between particle i and par-
ticle j, m3/s; ˇ′

ij
is a normalized kernel that relates not only to

the states (like volumes) but also to the weights of the two
simulation particles.

It is noteworthy that DWMC  evolves in either event-driven
mode or time-driven mode according to the value of empirical
parameter p. If p = 2/Nst, the resultant time-step, 2/(V

∑Nst
i=1C ′

i
),

is just the waiting time between two  successive coagulation
events, and DWMC  evolves in the event-driven mode, where
only one coagulation event occurs within this time-step. If
p > 2/Nst, there are pNst/2 coagulation events within the time-
step and DWMC  evolves in the time-driven mode. Generally
speaking, the event-driven version is more accurate because
events are fully uncoupled among different time steps, while
the time-driven mode is faster because many events are simu-
lated within one time step.

3) Within the time step the interacting particle pair(s) is (are)
selected with probability ˇ′

ij
/
∑

i

∑
j,j /=  iˇ

′
ij
. Either the cumula-

tive probability method or the acceptance-rejection method is
adopted to determine coagulated pair(s) in either event-driven
mode or time-driven mode, as described in reference (Zhao
et al., 2010).

4) The coagulation event between interacting pair results in new
simulation particles with new states and weights according to
the probabilistic coagulation rule. As for the i–j coagulation
event, two  new simulation particles replace the “old” particles
i and j, as formulated by:

(wi,wj), v∗
i

= vk|wk=max(wi,wj),

(13)
where the asterisk indicates a new value of weight or state after
the coagulation event; mi and vi are the total mass and volume
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of simulation particle i; vx,i and vy,i are the mass of component
x and component y in simulation particle i. It is obvious that
Eq. (13) satisfies the law of conservation of mass, and DWMC  is
capable of keeping simulation particle number constant. Par-
ticle diameter d is obtained from particle volume, provided
that the aggregates are spherical due to faster sintering in high
temperature.

5) The total coagulation rate of each particle is updated according
to the involved coagulation event(s) within 
t  using the smart-
bookkeeping technique (Zhao et al., 2009).

6) When certain conditions are reached, for example, when
the number concentration of real particles is halved, the
composition-dependent shift action is performed which
restricts the number of simulation particles in predefined size
intervals of each component space within these prescribed
bounds (between Ns,min and Ns,max). The action is realized as
following: first, the distribution of each component is sectional-
ized by some prescribed laws (e.g., logarithmical discretization)
and the number of simulation particles in the chosen inter-
vals of each component space is counted (e.g., the numbers
of simulation particles in size interval p of x-component space
and size interval q of y-component space are Nsx,p and Nsy,q,
respectively). Then, with respect to a section (p,q) of the
two-component space, if min(Nsx,p,Nsy,q) < Ns,min, a simulation
particle i in the section (p,q) is equally split into new simulations
particles with an integer number [Ns,min/min(Nsx,p,Nsy,q)]. These
new particles have the same internal variables as their par-
ent particle i and have a weight of wi/[Ns,min/min(Nsx,p,Nsy,q)].
One daughter particle replaces the position of its parent par-
ticle i, and other daughter particles are added to the array
of simulation particles; if max(Nsx,p,Nsy,q) > Ns,max, a simula-
tion particle j in the section (p,q) can be randomly removed
with a probability of [max(Nsx,p,Nsy,q) − Ns,max]/max(Nsx,p,Nsy,q).
A random process is used to decide whether simulation
particle j is removed or not. If a random number r from
a uniform distribution in the interval [0,1] is less than
[max(Nsx,p,Nsy,q) − Ns,max]/max(Nsx,p,Nsy,q), j is removed and its
open position is taken by the last particle in the simulation
particle array. If not, the number weight of j is corrected by
a multiple factor max(Nsx,p,Nsy,q)/Ns,max.

In fact, the action shifts some simulation particles from
densely populated regions of the two-dimensional component
space to less populated regions by splitting some simula-
tion particles in less populated regions into more simulation
particles and randomly removing some simulation parti-
cles in densely populated regions from the simulation. The
composition-dependent shift action overcomes the drawback
of a stochastic approach as far as possible, and at the same time
the computational cost can be limited.

7) Steps (2)–(6) are repeated until
∑


t  reaches the prescribed
end time of process simulation.

The DWMC  method is especially effective for two-component
coagulation because differentially weighted simulation par-
ticles can be specified to distribute as homogeneously as
possible over high-dimensional joint space of internal vari-
ables, which will greatly reduce statistical noise inherent to
the MC  method and determine full compositional distribu-
tions in multi-component coagulation processes. We  utilize the
DWMC  method to describe two-component Brownian coagula-
tion, which are commonly encountered in industrial processes
such as nanoparticle synthesis, coal combustion, incineration,

granulation, and crystallization.

�
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. Two-component Brownian coagulation

.1. Self-preserving distribution

It is well known that the size distribution of mono-component
articles satisfies the self-preserving form after a time-lag in
ases of Brownian coagulation in the continuum regime or in
he free-molecular regime (Friedlander, 2000). In this study, two-
omponent Brownian coagulation processes in the continuum
egime, in the free-molecular regime, and in the transition regime
re respectively simulated to study whether the compositional dis-
ribution in these cases is still self-preserving or not. Although
o analytical solution of compositional distribution exists, the
iscrete-sectional models (Landgrebe & Pratsinis, 1990; Vemury

 Pratsinis, 1995) provide classical benchmark solutions of self-
reserving particle size distributions for Brownian coagulation in
he continuum and free-molecular regimes.

In the self-preserving formulation, the dimensionless particle
olume is defined as � = Nv/M = v/v̄, and the dimensional distri-
ution as � = Mn(v, t)/N2 (Friedlander & Wang, 1966), where N is
he total number concentration of particles, M is the total mass (or
olume) concentration, v̄ is the average volume, n(v,t) is the particle
ize distribution function at time t such that n(v,t)dv represents the
umber concentration of particles in the volume range of v to v + dv.
s for two-component coagulation, the dimensionless volume and
umber density distribution of x-component are defined as

x = Nxvx

Mx
= vx

v̄x
, �x = Mxnx(vx, t)

N2
x

, (14)

here Nx is total number concentration of particles containing x-
omponent (in the case, there may be some particles not containing
-component due to the initial discrete distribution, thus Nx may
e unequal to N); Mx is total mass concentration of x-component
it may  not be equal to the total mass concentration of particles);

¯x is the average x-component volume; and nx(vx,t) is the number
ensity distribution function of x-component at time t such that
x(vx,t)dvx represents the number concentration of particles in the
-component volume range of vx to vx + dvx. Similarly:

y = Nyvy

My
= vy

v̄y
; �y = Myny(vy, t)

N2
y

. (15)

The dimensionless distribution is obviously subjected to the
ntegral constraints:∫ ∞

0

�d� = 1,

∫ ∞

0

��d� = 1,∫ ∞

0

�xd�x = 1,

∫ ∞

0

�x�xd�x = 1,∫ ∞

0

�yd�y = 1,

∫ ∞

0

�y�yd�y = 1.

(16)

The characteristic coagulation time scales for the three Brown-
an coagulation cases are defined as follows:

In the free-molecular regime:

fm
coag =

[(
3kBTd0

	p

)1/2(
3

4�

)1/6
N0

]−1

. (17)

In the continuum regime:

co
coag = 3�

2kBTN0
. (18)
In the transition regime:

tr
coag = 1

ˇtr(dx0, dy0)N0
. (19)
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Table 1
Simulation conditions for three two-component Brownian coagulation cases (per unit volume of computational domain).

Coagulation case Nx0 (m−3) Ny0 (m−3) dx0 (�m) dy0 (�m) T (K) � (Pa·s) 	p (kg/m3)

In continuum regime 3 × 1021 7 × 1021 0.5 0.5 300 1.81 × 10−5 –
In  free-molecular regime 7 × 1021 3 × 1021 0.001 0.002 1800 – 4200
In  transition regime 4 × 1021 6 × 1021 0.02 0.01 1800 5.65 × 10−5 4200

Fig. 1. Self-preserving size distribution and mono-variate compositional distributions for two-component Brownian coagulation. (a) In the continuum regime: Nx0:Ny0 = 3:7,
vx0:vy0 = 1:1; (b) in the free-molecular regime: Nx0:Ny0 = 7:3, vx0:vy0 = 1:8; and (c) in the transition regime: Nx0:Ny0 = 4:6, vx0:vy0 = 8:1.
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F ts. (a
r

c
y
c

ig. 2. The dimensionless bivariate compositional distributions at different time poin
egime.
With respect to any simulation, each particle has only one
hemical component at the initial stage, either x-component or
-component. The detailed simulation conditions for three two-
omponent Brownian coagulation cases are listed in Table 1.

a
n
t

) in the continuum regime; (b) in the free-molecular regime; and (c) in the transition
Fig. 1(a)–(c) shows the dimensionless particle size distribution
nd dimensionless mono-variate compositional distributions (the
umber density distribution function of one component amount, in
he form of volume of the component in aggregates) for Brownian
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Fig. 3. Compositional number density distributions for two-component Brownian coagulation. (a) In the continuum regime: Nx0:Ny0 = 3:7, vx0:vy0 = 1:1, Mx0:My0 = 3:7; (b) in
the  free-molecular regime: Nx0:Ny0 = 7:3, vx0:vy0 = 1:8, Mx0:My0 = 7:24; and (c) in the transition regime: Nx0:Ny0 = 2:3, vx0:vy0 = 8:1, Mx0:My0 = 16:3.



H. Zhao, C. Zheng / Particuology 9 (2011) 414– 423 421

Fig. 4. Compositional mass density distributions for two-component Brownian coagulation. (a) In the continuum regime: Nx0:Ny0 = 3:7, vx0:vy0 = 1:1, Mx0:My0 = 3:7; (b) in the
free-molecular regime: Nx0:Ny0 = 7:3, vx0:vy0 = 1:8, Mx0:My0 = 7:24; and (c) in the transition regime: Nx0:Ny0 = 2:3, vx0:vy0 = 8:1, Mx0:My0 = 16:3.
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Table 2
Peak values of compositional number (and mass) density distribution.

In continuum regime In free-molecular regime In transition regime

t = 102�coag t = 103�coag t = 104�coag t = 102�coag t = 103�coag t = 104�coag t = 102�coag t = 103�coag t = 104�coag

max(Nx/N) 0.0957 0.2612 0.4528 0.2781 0.5506 0.7510 0.1194 0.3268 0.5369
max(Ny/N) 0.0941 0.2606 0.4534 0.2780 0.5506 0.7510 0.1193 0.3269 0.5369
max(Nx/N):max(Ny/N) 1.0170 1.0023 0.9987 1.0001 1.0000 1.0000 1.0003 0.9994 1.0000
(vx/v)|(max(Nx/N)) 0.3042 0.3042 0.2958 0.2292 0.2292 0.2292 0.8458 0.8458 0.8458
(vy/v)|(max(Ny/N)) 0.7042 0.7042 0.7042 0.7708 0.7708 0.7708 0.1542 0.1542 0.1542
{(vx/v)|(max(Nx/N))}:{(vy/v)|(max(Ny/N))} 0.4320 0.4320 0.4320 0.2973 0.2973 0.2973 5.4863 5.4863 5.4863
max(Mx/M) 0.0410 0.1055 0.1478 0.0873 0.1415 0.1851 0.1397 0.3545 0.4858
max(My/M) 0.0948 0.2439 0.3484 0.2945 0.4826 0.6341 0.0256 0.0649 0.0901
max(Mx/M):max(My/M) 0.4325 0.4326 0.4242 0.2963 0.2932 0.2918 5.4693 5.4586 5.3939
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oagulation in the three regimes, respectively. It is found that not
nly the size distribution (� vs �) but also the mono-variate com-
ositional distributions (� x vs �x and � y vs �y) are self-preserving
orms for Brownian coagulation cases in the continuum regime
nd in the free-molecular regime. Also, both the size distribution
nd the mono-variate compositional distributions correspond to
he same self-similar formulation for the two cases. However, the
ize distribution and the mono-variate compositional distributions
n the transition regime cannot reach the self-preserving form,
s expected in the mono-component Brownian coagulation in the
ransition regime.

With respect to the combined number density distribution of
-component and y-component (the bivariate compositional dis-
ribution), its dimensionless form is defined as

xy = MxMyn(vx, vy, t)
NxNyNxy

, (20)

here Nxy (with unit of m−3) is total number concentration of par-
icles simultaneously containing x-component and y-component,

xy (with unit of m3 × m3 × m−3) is total mass concentration of par-
icles simultaneously containing x-component and y-component,
nd v̄xy = Mxy/Nxy = M1,1/M0,0. It is found that

∞

0

∫ ∞

0

�xyd�xd�y = 1,

∫ ∞

0

∫ ∞

0

�x�y�xyd�xd�y = MxyNxNy

NxyMxMy
= v̄xy

v̄x v̄y
/= 1.

(21)

Obviously, the dimensionless bivariate compositional distri-
ution does not satisfy the normalizing condition and is thus
ot self-preserving from the classical Friedlander’s point of view
Friedlander, 2000). However, from the dimensionless bivariate
istribution at different time points, as shown in Fig. 2, we can
nd that the contour plot of the logarithm of the normalized
wo-dimensional compositional distribution function, log10(� xy),
s nearly symmetric about the line log10(�y) = log10(�x) on the
lane log10(�y) − log10(�x). The white line in the three sub-figures
epresents the line log10(�y) = log10(�x). Rather, as time evolves,
og10(� xy) stretches along with the line log10(�y) = log10(�x),
esulting in a slimmer and slimmer contour plot. We  thus argue
hat the bivariate compositional distribution satisfies a semi self-
reserving form for Brownian coagulation cases in the continuum
egime, in the free-molecular regime, and also in the transition
egime.

We  also simulated the coagulation processes of two-component
ystems having different initial component distributions, for exam-

le, different Nx0:Ny0 and vx0:vy0. Similar results, which are not
hown here because of limited space, are obtained for the three
rownian coagulation cases. It is worth emphasizing that not only
he self-preserving size distribution and mono-variate composi-

(
7
1
g

0.2292 0.2292 0.2292 0.8458 0.8458 0.8458
0.7708 0.7708 0.7708 0.1542 0.1542 0.1542
0.2973 0.2973 0.2973 5.4863 5.4863 5.4863

ional distributions (like Fig. 1) but also the semi self-preserving
ivariate compositional distributions (like Fig. 2) are independent
f initial compositional distributions.

.2. Aggregative mixing

With respect to the three two-component Brownian coagula-
ion cases described in Section 3.1,  Fig. 3 shows the mono-variate
ompositional distribution in terms of the compositional num-
er density distribution (Nx/N or Ny/N) vs. the component mass
atio (vx/v or vy/v) at several representative time points. The corre-
ponding compositional mass density distribution (Mx/M or My/M)
gainst the component mass ratio is plotted in Fig. 4. The first direct
bservation from Fig. 3 is that the number density distribution
f x-component closely mirrors the number density distribution
f y-component. The simulation results obviously meet the intu-
tive understanding of aggregative mixing of the two-component
ystem. The excellent mirror should be ascribed to that the differ-
ntially weighted MC  is capable of capturing the details of not only
he homogeneously mixed particles, which occupy a larger number
and mass) share in particle population (for example, the particles
hose vx/vy is 3:7), but also the inhomogeneously mixed parti-

les, which are much less-populated (for example, the particles
t the two edges of compositional distributions). We  also observe
hat the geometric standard deviation of both x-component and y-
omponent number (and mass) density distributions decreases as
ime evolves, that is, as aggregate size increases. The results show
he degree of mixing between components improves as aggregate
ize increases, much in agreement with the numerical simulation
nd theoretical predictions of Matsoukas et al. (2006) and Lee et al.
2008).

The peak of component number (and mass) density distribu-
ion calls for particular attention, as shown by the maximum values
f Nx/N (or Ny/N) and Mx/M (or My/M) as well as the correspond-
ng vx/v (or vy/v) listed in Table 2. It is found that the component
umber (and mass) density distributions are peaked at the corre-
ponding mass fraction of x-component Фx = Mx0/(Mx0 + My0), and

y = My0/(Mx0 + My0) when reaching the self-preserving size and/or
ompositional distributions, implying that the two-component
ixing is largely controlled by the initial degree of segre-

ation in the feed. These results also agree with those of
atsoukas et al. (2006),  and Lee et al. (2008).  It is interesting

hat max(Nx/N):max(Ny/N) at different moments is approxi-
ately equal to 1:1 and max(Mx/M):max(My/M) approaches Фx:Фy
3:7 = 0.4286 for the coagulation case in the continuum regime,
:24 = 0.2917 for the case in the free-molecular regime, and
6:3 = 5.3333 for the case in the transition regime). And, as aggre-
ate size increases the maximum values of Nx/N (or Ny/N) and Mx/M
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or My/M) increase accordingly. The above observations also hold in
ther cases where the initial size and number of two  components
re different, and are also true for two-component Brownian coag-
lation in the continuum regime, in the free-molecular regime, also

n the transition regime.

. Conclusions

The two-component Brownian coagulation is simulated by the
ifferentially weighted MC  method. It is found that: (1) the self-
reserving formulations of both size distribution and mono-variate
ompositional distributions are obtained for Brownian coagulation
ases in the continuum regime and in the free-molecular regime,
here the values of the self-preserving mono-variate composi-

ional distributions are the same as those of the self-preserving size
istributions; however Brownian coagulation in transition regime
annot reach self-preserving size distribution and mono-variate
ompositional distributions. (2) The bivariate compositional dis-
ribution of two components satisfies a semi self-preserving
orm for any Brownian coagulation case, that is, the normalized
wo-dimensional compositional distribution is symmetrically dis-
ributed independent of initial compositional distributions; (3) the
egree of mixing between components improves (i.e., the width
f the compositional distributions is narrower and narrower) as
ggregate size increases; (4) the compositional number (and mass)
ensity distribution is largely controlled by the initial composi-
ional mass fraction.
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