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Abstract: Monte-Carlo (MC) method is widely adopted to take into account general 
dynamic equation (GDE) for particle coagulation, however popular MC method has 
high computation cost and statistical fatigue. A new Multi-Monte-Carlo (MMC) 
method, which has characteristics of time-driven MC method, constant number method 
and constant volume method, was promoted to solve GDE for coagulation. Firstly 
MMC method was described in details, including the introduction of weighted fictitious 
particle, the scheme of MMC method, the setting of time step, the judgment of the 
occurrence of coagulation event, the choice of coagulation partner and the consequential 
treatment of coagulation event. Secondly MMC method was varidated by five special 
coagulation cases in which analytical solutions exist. The good agreement between the 
simulation results of MMC method and analytical solutions shows MMC method 
conserves high computation precision and has low computation cost. Lastly the different 
influence of different kinds of coagulation kernel on the process of coagulation was 
analyzed: constant coagulation kernel and Brownian coagulation kernel in continuum 
regime affect small particles much more than linear and quadratic coagulation kernel, 
whereas affect big particles much less than linear and quadratic coagulation kernel. 
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Introduction 

Particulate Matter (PM10, aerodynamic diameter less thgn 10 I~m) has been widely 

investigated. Some kinds of combustion including coal combustion, gasoline/diesel oil 

combustion of vehicle, municipal solid waste combustion, etc ,  are one of the main sources 
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of PM10 Ell . Particle coagulation and breakage during combustion are the main mechanisms 

of the formation of PM. Furthermore the measures, which boost PM'  s coagulation during 

combustion, flight, emission, are the main PM'  s control strategies. In addition, solid 

particle (or droplet) coagulation (or  aggregation) is also an important mechanism in both 

nature and engineering fields, including the formation and evolvement of air aerosols and 

emulsion droplets, the manufacture of nanoparticle agglomerates. Particle size distribution 

(PSD) due to particle coagulation is of fundamental interest and a key issue during the 

process of particle dynamic evolution E21 . PSD along with time is described by general 

dynamic equation ( GDE) ,  which is also called Population Balance Equation (PBE) F31 It 

is focused on the algorithm solving GDE for particle coagulation. GDE for coagulation is as 

dnp(v,t)  v r 

=~-Jo~(V - u U)np(V - u , t )np(U, t )du  dt 

- np(V , t ) s174  (1) 

where np (v, t) is the number concentration of particles of volume v at time t( ( N/m 3 ) / m  3 , 

where N denotes the number of particles) ; f l ( u , v )  is coagulation kernel for two particles of 

volume v and u ( m 3 / N ) / s ,  representing the probability of a binary coagulation event per unit 

volume per unit time. In the paper, particle collision leads to particle coagulation directly 

and absolutely, and collision and coagulation are used indiscriminately. Any coagulation is 

binary coagulation. The term on the left-hand side of Eq. ( 1 ) describes the change in 

number concentration of particle of volume v with time; and the first term on the right-hand 

side is growth term, accounting for the formation of particle of volume v due to coagulation 

between particle of volume (v - u) and particle of volume u, and the second term is death 

term, showing the disappearance of particle of volume v due to coagulation with any particle. 

Nowadays the most popular numerical methods of GDE are moments of method, 

Monte-Carlo ( M C )  method E3-s~ , sectional method, discrete model, discrete-sectional 

method, finite element method, etc. Those methods have both advantages and 

disadvantages. MC method can be divided intb two classes according to the approach of 

time-step setting: one refers to "time-driven" MC method E3.4j, which calculates time-step 

before the dynamic event; The other MC method is called "event-driven" MC method ~5- s l ,  

in which the time between events is set on the basis of the known event probability. On the 

other hand, MC method can also be classified into two general classes according to whether 

or not the number of simulation particles and computational domain are changed along with 
the evolvement of time. The first approach refers to "constant-volume method" E3-53, which 

tracks a constant computational domain and thus grows or shrinks the number of simulation 

particle, N, in direct proportion to the number concentration of the physical system; since 

computation precision of MC is inversely proportional to the square root of N, constant- 

volume method can not maintain constant statistical accuracy. The second class is "constant- 
number MC" ~6-sl, which is based on event-driven MC, and in which the simulation volume 

is continuously contracted or expanded so as to contain the same number of simulation 

particles; constant-number method maintains constant statistical accuracy, however the 

follows: 
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contraction or expansion of computational domain results in bad applicability in engineering 

computation. 

Monte-Carlo code can only examine 1 0  3 - 1 0  7 particles at a time because of the limit of 

computation capacity of PCs, however a reasonably sized system of gas contains 

approximately 101~ or even more particles. So in some known Monte Carlo method the 

concept of a "subsystem" of the total system is introduced and it is assumed the whole 

system is fully-stirred and spatially isotropic. The behavior of the subsystem, which satisfies 

the constraint of periodic boundary conditions and contains 1 0  3 - l 0  7 simulation particles, 

duplicates the system as a whole. "Subsystem" hypothesis makes it difficult for those MC 

methods to simulate the dynamic evolution of the whole system and to consider further space 

dispersion of PSD. 

In order to overcome those drawbacks of those known MC methods ( especially such as 

the contradiction of computation cost and computation precision, and the constraint of the 

introduction of the concept of "subsystem" ) ,  it is tried to perform a new Multi-Monte-Carlo 

method (MMC) to consider GDE for coagulation. 

1 Description for Multi-Monte-Carlo Method 

1.1 I n t r o d u c t i o n  of  concept of " w e i g h t e d  f ic t i t ious  pa r t i c l e "  

The MC method discards the concept of "subsystem" and does not describe directly the 

evolution of real particles. Instead the concept of " weighted fictitious particle" is 

introduced. It is believed that those real particles, who have the same or similar volume, 

have the same properties and hence the same behaviors. Those real particles are represented 

by one or several fictitious particles, depending on the number of those real particles. It is 

considered the fictitious particles is an "indicator" of those real particles, says, the evolution 

process of fictitious particles denotes that of real particles within computational domain. The 

approaches of transforming real particles into fictitious particles are as follows : real particles 

within computational domain are classified; and then according to local particle size 

distribution, some proper fictitious particles are assigned to represent real particles of any 

particle class; One fictitious particle, of which serial number is i, is endowed with a 

transform-weight "wi" ,  the physical meaning of which is the number of local real particles 

which are represented by the fictitious particle i. Since the number of fictitious particles is far 

less than the number of real particles, the MC method, which tracks those fictitious 

particles, will have much less computation cost than those ordinary MC methods which track 

those real particles, especially when the number of real particles is large within 

computational domain. Furthermore the introduction of the concept of "weighted fictitious 

particle" makes it possible for the MC method to simulate the space evolution of particle size 

distribution of the whole system. 

1.2 S c h e m e  of M M C  m e t h o d  

"Time-driven" MC technique is developed to consider possible binary coagulation event 

within time step At, which is set real-timely. Although the total number of real particles cuts 

down continuously along with the occurrence of coagulation event, the total number 
fictitious particles is constant by the means of adapting the transform-weight and volume of 
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the related fictitious particle. In addition, the volume of computational domain is conserved. 

The MC method is named with multi-Monte-Carlo (MMC) method since the MC method 

has the characteristics of time-driven MC method, constant number method and constant 

volume method at the same time. The scheme of MMC method for particle coagulation is 

showed in Fig. 1. 

Initialization 

I Handling real particles and 
generating fictitious particles 

t 
Setting time step At real-timely [ 

Tracking a fictitious particle ,4 

( 

Computing coagulation probability Cil 
between ,4 and any other fictitious 

particle n contro volume V I 

I 

Random number R l from a uniform [ 
distribution in the interval [0,1 ] I 

Fig. 1 

s 

Choosing a coagulation partner 
B us ng Nanbu method 

A coagulating with B, noting I 
I 

some properties of//and B I 

I Treating of every coagulation even~ 

Advanced time evolution by At [ 

(End) 
Schematic diagram of multi-Monte-Carlo method 

It is noticeable that coagulation event does not influence immediately the properties and 

the behaviors of the tracked fictitious particles and the related fictitious particles within 

current time step. The influence will occur in the next time step. So treating of particle 

coagulation should be delayed until the end of the current time step. 

1.3 Setting of time step 
MMC method is based on time-driven technique, and the rule of the setting of time step 

is: within time step At which is adjusted real-timely, the number of coagulation event of any 

fictitious particle must be less than or equal to one. The rule can assure that every 

coagulation event can be counted. Within computational domain V, one assumes the number 

of real particles is N and the number of fictitious particles N~. Then C~, the total coagulation 

probability per unitfime of fictitious particle i with any fictitious particle in V, is as follows: 
N, N, 

c, = Z x  j-I Z l-/3  x w/I. (2) 
j= l , j # i  j = l  
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So the mean coagulation time scale for fictitious particle i interacting with any fictitious 

particle is: t~,o = 1/C~. Then, time step At should be less than or equal to the minimum value 

of the coagulation time scale of any fictitious particle, i. e. , At ~< min(t~,c) = 1/max(C~). 

Generally, in order to increase the number of Monte-Carlo loop, time step is usually defined 

as At = ot /max(Ci)  ,or ~< 0. 01. 

1.4 J u d g m e n t  of o c c u r r e n c e  of coagu la t ion  e v e n t  

The Nanbu method [9] is used to judge the occurrence of coagulation event and to search 

coagulation partner. A random number R1 from a uniform distribution in the interval [0,11 

is generated, and then a coagulation event is calculated when the random number R~ becomes 

smaller than the coagulation probability within At, i. e. , R 1 ~< CiAt. 

1. $ Choice  of coagu la t ion  p a r t n e r  

Once coagulation event occurs, the next issue is choosing coagulation partner of the 

tracked fictitious particle i. Firstly, the probability of fictitious particle i coagulating with any 

fictitious particlesj is expressed as P~ = wj x/3~ x At; Secondly the random number R1 is still 

used for the determination of true coagulation partner. If the relation 
j - l  j 

Z P ~  ~<R1 ~< ~ P z k ,  j ~ [1 ,Nf]  (3) 
k = l  k = l  

is satisfied, it is decided that the tracked particle i coagulate with fictitious particlej. 

1.6 C o n s e q u e n t i a l  t r e a t m e n t  of coagu la t ion  e v e n t  

If fictitious particle i coagulates with its coagulation partner j ,  MMC method adjusts their 

transform-weight ( wi and wi, respectively) and volume ( v~ and vi, respectively) to realize the 

consequence of coagulation event and to conserve the total number of fictitious particles and 

computational domain. Nanbu El~ considered the number of coagulation event between two 

weighted particles is the minimum between transform-weight w/and w~, that is, rain( w/ ,wi) ,  

and Ref. [ 11 ] treated the consequence of coagulation event of weighted fictitious particles 

according to the above theory. However there exists some numerical bias when the evolution 

time excesses greatly the characteristics coagulation time. I n  fact, because fictitious particle 

is an indicator of some real particles, one can neglect the factual progress of the coagulation 

event. It is considered the consequence of the coagulation event is the appearance of real 

particle with the number of ( w  i + w j ) / 2  and the volume~of (v/ + vj). Because during each 

time step every fictitious particle needs to judge the occurrence of coagulation event and then 

choose its partner, a coagulation event of particle pairs.is double counted. If the tracked 

fictitious particle is i, only some properties of i is changed to satisfy the consequence of the 

coagulation event and no changes in its partner j :  

wi .... = wi /2;  vi .... = vi + vj. (4) 
When the tracked fictitious particle is assigned to j in turn, the same coagulation event will 

be checked and its coagulation partner will be i in theory. According to Eq. ( 4 ) ,  only some 

properties of i are changed to satisfy the consequence of the coagulation event. The 

measures not only can conserve the number of fictitious particle, but also accord with the 

reality of coagulation event, no matter how many coagulation events there are and how long 

evolution time is. 
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2 C o m p u t a t i o n a l  Cases  

The paper uses some special cases in which analytical solutions exist to validate MMC 

method. 

2.1 Case 1, constant coagulation kernel of monodisperse particles, f l (u ,v )  = A 
Here A is a constant. Constant coagulation kernel indicates that the rate of coagulation is 

independent of particle volume, i. e . ,  particle size distribution. The constant kernel 

reproduces the integral value behavior in the Brownian coagulation. Analytical solution of 

the case can refer to Ref. [ 5 ]. 

2.2 Case 2, l inear coagulation kernel  of monodisperse particles,  fl ( u, v) = A ( u 
+v)  

Here u and v is respectively the volume of two coagulation particles. The linear 

coagulation kernel is frequently used to approximate turbulent gravitational coagulation, as 

the kernels have about the same degree of growth with increasing particle size. Analytical 

solution of the case can refer to Ref. [ 5 ]. 

2 .3  Case 3, quadra t ic  constant  kernel of monodisperse par t i c l es , /3 (u  ,v) = Auv 

The quadratic coagulation kernel leads to critical phenomena ( "  gelation") during 

coagulation. In this case there exists only an analytical solution for t < 1/(  NoA ) esl, where N O 

is the initial number of real particles. 

2 .4  Case  4, Brownian coagulation kernel  of monodisperse particles in t h e  
continuum regime 

When particle diameter is so small that particle enters continuum regime, the 
coagulation kernel for Brownian diffusion are given E122 : 

2k B Tr u 1/3 V 1/3 ] 
_ + ( = ) . ,  

where k B is Boltzmann' s constant, T is the temperature and/x is the viscosity of the medium. 

Analytical solution of the case can refer to Ref. [ 6 ]. 

2.5 Case 5, Brownian coagulation kernel  of log-normal polydisperse particles 
in the continuum regime 

The analytical solution E131 of the case with initial lognormal PSD and Brownian 

coagulation kernel in the continuum regime is as follows: 

1 N( t )  e x p { -  lnZ[V/Vg(t) ~ np(V,t) (6) 
3v 2~/~-ln o ' ( t )  - 18 ln2o-(t) J '  

where vg ( t )  is the geometric number mean particle volume, o-(t) is the geometric standard 

deviation based on particle radius. Coagulation kernel in the case is the same with that of 

Case 4. 

Coagulation kernel is generally bounded as follows: A <. ~( u ,v) <. A( u + v) or Auv. 

3 N u m e r i c a l  S i m u l a t i o n  

In the paper, for all cases, the initial total particle number is N O = 108 , andA = 10-9; 

for Case 4 and Case 5 of Brownian coagulation, the temperature T is 2 500 K and is always 

constant, and Boltzmann' s constant k B is 1. 380 54 x 10-23j , K ,  and the medium viscosity/z 
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is 1.83 x l 0 - S k g / ( m  �9 s) .  

The initial number of fictitious particles in MMC method is set as 3 000 for Case 1, and 

2 000 for Case 2, 1 000 for both Case 3 and Case 4, 10 000 for Case 5, respectively. The 

initial particle size distribution for Case 1 - Case 4 is monodisperse, however polydisperse 

for Case 5. In order to initialize particle population and collect statistics properties of PSD at 

some appointed time-point, polydisperse particles are divided into 200 classes between the 

largest and smallest particle volumes in the simulation. 

The initial particle diameter for monodisperse particle cases is 1.24 (non-dimension). 

For Case 5 of polydisperse particles, in the paper we choose o0 = 1 .5 ,  v~o = 1.0 tzm s. The 

volume range of lognormal distribution of Case 5 in the paper is considered as lnvg 0 - 121no'0 

~< lnv ~< lnvg 0 + 121nO'o. Now the minimum volume and diameter of particles is 7. 701 • 10 -3 

i.~m 3 and 0.245 i.~m, respectively; the maximum volume and diameter is 127. 746 ~m 3 and 

6. 281 p~m, respectively. 

Figure 2 shows the comparison of the time evolution of some key parameters for Case 1 

between analytical and MMC solution, including the curve of relative total number 

concentration (N(t)/No) along 

with time t, relative geometric 1.4 

mean particle mass (ffl(t)/ ~Io) 
1.2 

along with t and geometric standard 
1.0 

deviation (o-) along with t .  Although 
0.8 time evolution is continued to a o- 

long time and the total number of o.6 

particles decreases sharply, com- 0.4 

putation precision is conserved well 0.2 

because of the constant number of 0.0 

fictitious particles. The agreement 

between MMC solution and 

analytical solution is exact. 

The results of numerical 

simulation for Case 2, Case 3, and 

Case 4 are exposed synthetically in 

Fig. 3, including the curve of 

relative total number concentration 

(N(t)/No) along with time t for 

Case 2 and Case 3, and the curve 

of geometric mean particle mass 

(~I(t)/~,lo) along with t for Case 

4. As we can see, the simulation 

result of MMC method for GDE 

agrees with analytical solution well, 
even the difference between MMC Fig. 3 

solution and analytical solution is 
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less than the thickness of the line. 
As far as Case 5 is considered, Fig. 4 ( a )  is a plot of relative total number concentration 

( N ( t ) / N  O ) ,  relative geometric mean particle volume ( vg (t)/V~o ) , and geometric standard 

deviation o- as a function of time. For parameters N( t )  and vg( t ) ,  the MMC solution agree 

well with analytical solution. The result of o- has some difference with analytical solution 

along with the evolution of time. Fig..4(b) illustrates the evolution of the size distribution 

for Brownian coagulation of polydisperse particles. The agreement between MMC solutions 

and analytical solutions is mostly good. Along with the evolution of time, the peak value of 

size distribution curve is descending, which means particle number decreases continuously; 

and the location of peak is moving to the right side ( the side of big particles), which means 

the particle volume is bigger and bigger. During the evolution, the particle size distribution 

remains basically lognormal distribution, i. e. , the " self-preserving" distribution E~zl . 
However, along with advancing of time evolution, the agreement for size distribution 

between MMC solution and analytical solution becomes worse and worse, which inherits the 

striking difference of o- in Fig. 4 ( a )  between MMC solution and analytical solution. The 

inapplicable measure of particle bin discretization and the insufficient number of fictitious 

particles may contribute partly to it, and certain additional approximations and 

simplifications of analytical solution in Ref. [ 13 ] may also contribute partly to those bias. 

Those need validate and probe farther. 
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Fig. 4 The time evolution of parameters for Case 5 

Ordinary Monte-Carlo methods have to increase the number of simulation particles 
because of the continuous decreasing of simulation particles along with time evolution, 
however MMC method will save computation cost because of less number of fictitious 
particles. The setting evolution time for Case 1 through Case 5 is 1 000 s, 8 s, 10 s, 108 s and 
5 xl06 s, respectively. The corresponding computation cost of MMC method is 1 091 s, 763 s, 

94 s, 1 211 s and 1 105 s, respectively ( CPU is Athlon Xp 2 500 + ). 

4 D i s c u s s i o n s  

The different kinds of coagulation kernel have the different influence on the process of 
coagulation. As for constant coagulation kernel case, those particles with different volume 
have the same coagulation probability, says, constant coagulation kernel has the same 
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influence on small particles and big particles at the same moment; However, along with the 
evolution of time, the total number of real particles decreases, which leads to C~, the total 
coagulation probability per unit time of fictitious particle i with any fictitious particle, smaller 
and smaller and then time step At bigger and bigger. As for both linear and quadratic 
coagulation kernel cases, coagulation probability of those small particles will be less than 
that of those big particles, and coagulation probability for both cases has cumulative effect 
( linear cumulation or quadratic cumulation),  says, the bigger tracked particle or partner has 
bigger coagulation probability; Along with the advancement of time, both the depletion of 
real particles and the enlargement of mean particle volume have complicated influence on C~. 
It is found during numerical simulation that coagulation probability C~ will increase 
continuously as for both linear and quadratic coagulation kernel cases, which also makes 
time step At decrease continuously. Comparatively, C~ in linear coagulation kernel case 
increases faster than C~ in quadratic coagulation kernel case in the paper. As far as Brownian 

coagulation kernel in continuum regime is considered, the kernel is weakly size-dependent 
because the kernel is the function of the radio between the diameters of two particles. 
Furthermore, although the mean particle mass in Case 5 increases continuously, the range of 
particle size distribution does not expand obviously and both big and small particles exist, 
which also proves Brownian coagulation kernel in continuum regime has weak correlation 
with particle size distribution. So constant coagulation kernel is similar with Brownian 
coagulation kernel in continuum regime and can be regarded as approximation or limit case 
of Brownian coagulation kernel in continuum regime. In a word, constant coagulation kernel 
and Brownian coagulation kernel in continuum regime affect small particles much more than 
linear and quadratic coagulation kernel, whereas affect big particles much less than linear 
and quadratic coagulation kernel. 

Different from those known Monte-Carlo methods for coagulation, MMC method 
introduces the concept of "weighted fictitious particle",  which not only makes it have 
receivable computation cost in engineering application, but also makes it possible to simulate 
the time and space evolution of PSD within the whole system discarding the concept of 
" subsys tem";  Similar with constant number method E6-8] , MMC method has high 
computation precision because of the constant number of simulation particles. In addition, 
MMC method conserves computational domain, which makes it convenient to be applied in 
engineering computation and scientific quantitative analysis. Last but not least, MMC 
method is based on time-driven technique and can expand to take into account other events 
such as condensation/evaporation, nucleation, deposition, breakage, etc.  MMC method not 
only can consider space dispersion of PSD by means of plotting grid, but also can describe 
particle and medium velocity field by coupling Lagrange particle tracking algorithm and then 
two-phase flow model. MMC method can also be applied on consider GDE for multi- 
component, more-dimension and polydisperse particle population. Those works will be 
developed at the next stage. 

Computational bias of MMC methods should be advanced by means of applicable 
measure of particle bin discretization, the opposite number of fictitious particles and the 
more times of MMC loop. 



962 ZHAO Hai-bo, ZHENG Chu-guang and XU Ming-hou 

5 Conclusion 

Multi-Monte-Carlo ( M M C )  method for general dynamic equation (GDE)  considering 

particle coagulation is performed: MMC method introduces the concept of " weighted 

fictitious particle" and then tracks those fictitious particles, the number of which is far less 

than that of real particles. MMC method is based on "time-driven" Monte-Carlo technique 

and conservers the number of fictitious particles and computational domain constant during 

simulating. MMC method had been used to simulation five special cases with different 

coagulation kernels. The agreement between MMC solutions and analytical solutions is 

mostly good, which validates computation precision of MMC method. Furthermore 

computation c o s t  of MMC method is receivable for engineering computation and general 

scientific quantitative analysis. Those may make MMC method a standard reference solution 

for solving GDE. 
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