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a b s t r a c t

Insight into the spatiotemporal evolution of particle size distribution (PSD) is very useful in many natural
and engineering systems in which the multiphase fields are spatially inhomogeneous and complicated
dynamic processes of particle population, e.g., coagulation between particles, occur with field-dependent
rates. Traditional population balance modeling (PBM) is usually used to simulate spatially homogeneous
dynamic processes, only obtaining the time evolution of PSD. In this paper, we presented an algorithm to
predict the spatiotemporal evolution of PSD accounting for mutual coupling of particle population and
hydrodynamics. The differentially-weighted Monte Carlo method for PBM is used to simulate coagulation
behavior of particles in each grid that is considered to be spatially homogeneous, and the transport
behavior of fluid and particles towards neighbor grids that are spatially inhomogeneous are described
by general conservation equations of multiphase flows. The simulation strategy is based on the selection
of a time step within which the fluid transport, the particle transport and the particle dynamics are
uncoupled and then separately simulated. A limiting case of the coarse high-inertia particles whose
motion is independent of surrounding fluid is chosen to validate the population balance-Monte Carlo
(PBMC) method for the spatiotemporal evolution of PSD. The computational time is found to be less by
a factor of 10 compared to the direct numerical simulation (DNS), yielding reasonably closer predictions
of spatiotemporal particle size distributions.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Population balance modeling (PBM) has been a state of great
interest for industrial applications such as crystallization, precipi-
tation, combustion, aerosol, milling, pharmacy, and granulation.
Great efforts have been made to further develop the methodology
[1,2]. Traditional PBM usually simulates presumed spatially homo-
geneous dispersed systems and only captures the temporal evolu-
tion of particle size distribution (PSD). In fact, if only volume
averaged (spatially-averaged) population balance equation (PBE)
is used as the macro-continuity equation to characterize the com-
plex particle–fluid systems, it is the zero-dimensional simulation.
The zero-dimensional PBM may explore some basic characteristics
of dispersed systems to a certain extent, however, fails to obtain
the detailed information on spatially-resolved multiphase flow
fields and dynamic evolution. Furthermore, in the zero-dimen-
sional PBM the interaction between continuous and discrete
phases is neglected. In order to achieve accurate control of partic-
ulate processes, optimized design and operation of corresponding
process equipments, the numerical analysis of temporally and spa-
tially inhomogeneous PSD should be considered [3], as almost

every industrial processes will have spatial inhomogeneities. Fur-
thermore, the occurrence rates (characterized by ‘‘kernels’’) of dy-
namic events involved in particle population are generally
dominated by, or, at least, dependent of their surrounding multi-
phase fluid fields. As a example, the turbulent transport effect
and the preferential concentration effect lead to an increase of in-
ter-particle collision rates by a factor of as much as 30 [4]. Thus, for
an accurate modeling the particle dynamics and hydrodynamics
have to be solved simultaneously to obtain the spatiotemporal
evolution of particle population in spatially inhomogeneous sys-
tems. In this sense, the PBM for particle dynamics has to couple
with multiphase flow models for hydrodynamics.

The mutual coupling of the PBM with the multiphase flow mod-
els faces enormous challenges based on issues of formulation as
well as computation [1]. For example, most multiphase flow mod-
els are not capable of treating widely-distributed polydispersed
particle population that is a typical characteristic during dynamic
evolution of particles even through their distribution is monodis-
perse in the initial stage. Moreover, it is difficult to consider the ex-
change and transport of momentum, mass and energy between the
continuous and discrete phases as well as between the discrete
phases (i.e., the effect of four-ways coupling). As far as only pair-
wise coagulation event and only one internal state of particles,
particle size, are considered here, the mathematical formulation
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of the change in the continuous particle size distribution function
(PSDF) with time and position is given by generalizing the equation
of convective diffusion into the Smoluchowski equation [5]:

@n
@t
þr � nu ¼ r � Drn�r � cnþ 1

2

Z vp

0
bð~vp; vp

� ~vpÞnð~vpÞnðvp � ~vpÞd~vp

�
Z 1

0
bðvp; ~vpÞnðvpÞnð~vpÞd~vp ð1Þ

where n is the particle size distribution function; D is the coefficient
of diffusion; c is the particle migration velocity resulting from the
external force field; u is the fluid velocity; bðvp; ~vpÞ is the coagula-
tion kernel for two particles of volume vp and ~vp, m3 s�1. The third
term on the right-hand of Eq. (1) is the birth term of coagulation
processes, accounting for the formation of a particle of volume vp

due to the coagulation event between a particle of volume ~vp (smal-
ler than vp) and a particle of volume (vp � ~vp); and the coefficient 1/
2 is raised from the fact that one coagulation event is related to two
particles. The forth term is the death term, representing the disap-
pearance of a particle of volume ~vp due to coagulation event with
any other particle.

As a first step of the coupling between the PBM and the multi-
phase flow models, in many studies for the particulate processes
(as examples, see Refs. [6–9]) a one-way coupling is assumed,
i.e., the particulate particle phase is assumed to have negligible
influence on the surrounding fluids so that the continuous phase
can be simulated by general Eulerian models even commercial
CFD (computational fluid dynamics) solvers independently. Using
the spatially inhomogeneous flow fields obtained in advance and
assuming that the transport of particles occurs solely by convec-
tion and diffusion, particle dynamics in each grid that is considered
to be spatially homogeneous is captured by the PBM and the spa-
tiotemporal evolution of PSD is thus obtained [10–12]. The one-
way-coupling CFD–PBM simulation is easy to realize numerically
and program. Studies on coupling of the PBM with the Eulerian
models or CFD calculations can be classified according to the
numerical methods applied for PBM, which could be monodisperse
methods [13], moments methods [14–23], sectional methods [24–
30], Monte Carlo methods [31–37], or other novel methods [38–
43]. With regards to the one-way-coupling simulation strategy,
the conservation equations of the discrete phase are not solved
simultaneously and the interaction between the continuous phase
and entrained discrete particles are left out of account. It is feasible
for simulating the particulate processes and micro-scale particles
because the particle displacement relative to the fluid element
path and the influence of the particle phase on the fluid phase
are negligible. From the viewpoint of multiphase flow simulation,
the one-way coupling is reasonable when the fractional volume
Uv and mass loading Um of particles are small (e.g., Uv < 10�4).
However, when Uv increases or when the phenomenon of preferen-
tial accumulation results in obvious nonuniform distribution of
particles, the effect of the turbulent carrier flow on the dynamics
of the dispersed phase and the back influence of the dispersed
phase on the carrier-phase dynamics should be considered simul-
taneously (i.e., the two-way and even four-way coupling between
the two phases). In many of multiphase processes the coupling be-
tween the continuous and discrete phases can become significant
due to mass, momentum and energy transfer, and neglecting such
two-ways-coupling effects may lead to erroneous prediction and
understanding of overall system behavior [44]. It is thus necessary
to couple particle dynamics (using the PBM) and not only fluid
behavior but also transport and motion of particles (using the mul-
tiphase flow models) in these circumstances. Unfortunately, at-
tempts to incorporate the PBM into multiphase flow models have
been limited.

As known, the multiphase flow models can fall into two catego-
ries according to the simulation methodology of the discrete
phases in an Eulerian reference frame or in a Lagrangian reference
frame, saying, the two-fluids models (Eulerian–Eulerian models) or
the fluid-trajectory models (Eulerian–Lagrangian models). Simi-
larly, the numerical methods of PBM can be divided into determin-
istic and stochastic. On the deterministic front, the differential
equations depicting the population balance, population balance
equations (PBEs), are directly solved through integration using
appropriate techniques, e.g., an discretization scheme towards par-
ticle size distribution (as in (discrete)-sectional methods) and a
presumed monodisperse or log-normal PSD (as in moments meth-
ods). In contrast to deterministic integration, stochastic methods
utilize Monte Carlo (MC) to simulate the evolution of a finite sam-
ple of the particle population. Obviously, the deterministic meth-
ods for PBM, which are based on the Eulerian reference frame
and the PBE can be solved by ODE (ordinary differential equation)
solvers together with the conservation equations of multiphase
flows, are capable of coupling into the Eulerian–Eulerian models
for hydrodynamics. As an example, Yeoh and Tu [45] presented a
two-fluid model coupled with population balance approach to pre-
dict sub-cooled boiling flow at low pressure in a vertical annular
channel, which is implemented in the computer code CFX4.4. How-
ever, the Eulerian–Eulerian model and the deterministic PBM
method, which are based on the calculation scheme of volume/
ensemble/mass-weighted averaging, exhibit relatively lower reso-
lution on the particle dynamics. In fact, the Eulerian–Eulerian mod-
el is restricted within monodisperse particles (usually, the
polydisperse particles are viewed as monodisperse particles in
the model), and is thus unable to consider the polydispersity effect
and cross-scale effect of particles (in fact, these effects are typical
characteristics in the particle dynamics). Furthermore, the deter-
ministic PBM method cannot gain information about history, tra-
jectory crossing and internal structure of particles. The
deterministic PBM method is also less sensitive to the innate fluc-
tuations for dynamic processes which are also stochastic in nature.
Besides these, the deterministic PBM methods are generally formu-
lated by complicated mathematical equations, and are at the disad-
vantage of the modeling of more than two particle properties (such
as size, chemical composition, surface area, and charge level). On
the other hand, the stochastic methods for PBM (such as Monte
Carlo techniques) are able to simulate any number of particle prop-
erties and are easily programmed. Although the population bal-
ance-Monte Carlo (PBMC) methods exhibit relatively higher
computational expense due to the large number of simulation par-
ticles that need to be tracked in order to provide a statistically rea-
sonable representation of the physics, the high-speed development
of computer hardware (CPU and memory) and parallel computing
motivates their practical applications. As the PBMC methods are
methodically closer to the Lagrangian approach, they are more
suitable for coupling into the Eulerian–Lagrangian models to ob-
tain the spatiotemporal evolution of particle population. Until
now, however, the coupling of the PBMC methods and the Euleri-
an–Lagrangian models has not been reported.

Since the PBMC methods generally require expensive computa-
tional cost and exhibit statistical noise, it is very important for the
PBMC methods to utilize limited number of simulation particles to
reach an acceptable accuracy. In recent years several PBMC meth-
ods have been developed to keep the total number of simulation
particles within prescribed bounds, even though the number con-
centration of real particles changes dramatically. Prominent among
these are the constant-number method by Matsoukas et al. [46,47]
and the differentially weighted MC method by us [48,49] and other
scientists [50,51]. Through filling continuously the empty sites due
to, e.g., coagulation event, with copies of the surviving particles, or
discarding continuously some surviving particles to insert some
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new particle from, e.g., breakage event, the total number of simu-
lation particles is maintained in the constant-number method. At
the same time, the waiting time between two successive events
adjusts itself to the rates of the corresponding dynamic processes.
The constant-number method uses equally-weighted simulation
particles in nature. With regard to the differentially-weighted MC
method, the simulation particles have different private weights.
The event probability of one simulation particle relates to not only
its rate of corresponding dynamic process but also its private
weight. The total number of simulation particles is kept constant
by adjusting their private weights to the corresponding dynamic
events. We will briefly introduce this method in Section 2.
Although constant number of simulation particles is very useful
to guard statistical accuracy, it must be noted that the PBMC meth-
ods may still perform a great deal of statistical noise for particle
size distribution function if there is an insufficient number of sim-
ulation particles in some areas of size spectrum. For example [49],
even when millions of simulation particles are used in the PBMC
methods, there may still be only several simulation particles or
even no simulation particle at the edges of a lognormal size distri-
bution if simulation particles are equally weighted. In order to
determine accurately the particle size distribution over the full size
range, not only the total number of simulation particles but also
the simulation particle number in each section of size spectrum
should be guaranteed within appropriate bounds. In other words,
it is necessary to specify a finite number of simulation particles
to distribute over size spectrum homogeneously. It is not possible
with the constant-number method to restrict the simulation parti-
cle number in each section of size spectrum within prescribed
bounds due to its inherent equally-weighting scheme. On the con-
trary, in the differentially-weighted MC method [48,49], sufficient
simulation particles can be placed in these less-populated areas of
the size spectrum and the simulation particle number in densely-
populated areas can be limited by consideration and recalculation
of individual weights, which makes the differentially-weighted MC
method protect against its statistical noise in the calculation of PSD
and constrain at the same time its computational expense. We also
noticed that the stochastic weighted particle method [50] recently
proposed by Patterson, Wagner and Kraft and the weighted flow
algorithm [51] recently proposed by DeVille, Riemer, and West ex-
hibit good performance as our differentially-weighted MC.

In this paper, we present a simulation strategy to couple the dif-
ferentially-weighted MC method for particle dynamics with the
general Eulerian–Lagrangian models for hydrodynamics. The simu-
lation strategy is based on the selection of a time step within which
the fluid transport, the particle transport and the particle dynamics
are uncoupled and then separately simulated. The resultant Euleri-
an–Lagrangian–PBMC model (or call it the CFD–PBM model) is able
to account for the fluid–particle interaction and the particle
dynamics (the particle–particle interaction in a sense) in theory.
Among the various particle dynamic mechanisms, particle coagula-
tion is the most demanding mechanisms for modeling, as it always
involves interaction between different particles. This paper aims to
the spatiotemporal evolution of PSD due to particle coagulation
and the transport of their surrounding multiphase fluids. A limiting
case of the coarse high-inertia particles in which analytical coagu-
lation kernel exists is used to validate the model by comparing it
with direct numerical simulation (DNS, as a benchmark).

2. Model description

2.1. The simulation strategy of coupling the PBMC method for particle
dynamics with the Eulerian–Lagrangian model for hydrodynamics

The Eulerian–Lagrangian model is one of the most popular
models simulating the two-phase flow fields. The transport of the

continuous phase in the Eulerian reference frame is based on its
conservation equations of mass, momentum and energy, which
can be formulated by the following general representation:

@ðq/Þ
@t

þ @ðquj/Þ
@xj

¼ @

@xj
C/

@/
@xj

� �
þ S/ ð2Þ

where / is a general transport variable which could be 1 (for the
continuity equation), uj (fluid velocity, for the momentum equation)
and h (enthalpy, for the energy equation); q is fluid density; C/ is
diffusion coefficient dependent of /; Su is /-dependent source term
which should consider the effect of the discrete phase on the con-
tinuous phase. There are numerous studies on S/ and the closure
of the conservation equations, and many models, for example, Rey-
nolds stress model [52], appear in open references.

In a Lagrangian reference frame, the transport equations on the
position and velocity of a particle can be written as [53]:

dxpi

dt
¼ upi ð3Þ

dupi

dt
¼ gi þ

1
sp
ðui � upiÞ þ Fother ð4Þ

where xpi and upi are the position and velocity of a particle; gi is the
gravitational acceleration; sp is the particle relaxation time for par-
ticle motion due to the effect of the viscous drag force; and Fother is
other force terms contributing to particle transport.

The paper pays particular attention on the coupling strategy of
the PBM and the multiphase flow model, and the detailed models
for multiphase flows are thus not discussed here. Since the multi-
phase flow simulators work with standard integrators that are
time-driven, it is possible to integrate the PBMC method and the
Eulerian–Lagrangian model into a same framework. The classical
direct simulation Monte Carlo (DSMC) for gas dynamics (firstly
proposed by Bird [54]) used a small time step to insure the move-
ment of gas molecules can be decoupled from the collision pro-
cesses of gas molecules. Illumined by the idea, the coupling
strategy adopted here is based on the appropriate selection of
time-step within which the coupling between particle behavior
and fluid flow is neglected. Within an appropriate time-step, it is
considered that not only the flow transport and the particle trans-
port are uncoupled each other, but also the particle transport and
the particle dynamics are uncoupled each other. So the flow fields
characterized by Eq. (2), the particle fields by Eqs. (3) and (4) and
the particle size distribution by the PBE are independently solved
within the time-step. As mentioned above, the kernels of dynamic
events, e.g., the coagulation kernel bij(xk, t), which models the
occurrence probability of coagulation event between any two par-
ticles i and j at time t and space position xk, is usually dependent of
environmental variables of two-phase flows. Thus, within a time-
step two-phase flow fields should be firstly simulated using the
Eulerian–Lagrangian models, without consideration of particle
dynamics. Using the two-phase flow fields, spatiotemporally-
dependent coagulation kernels can be calculated. Then the PBMC
method is used to capture particle coagulation events in each grid.
Coagulation dynamics results in changes of particle fields. Based on
these new particle fields, the two-phase flow fields within next
time step are calculated. By the exchange of the environmental
variables of the continuous and discrete phases within the time-
step, the fluid–particle interaction as well as the particle–particle
interaction is considered at the same time. We plot Fig. 1 to dem-
onstrate the coupling of the population balance and the hydrody-
namics. Obviously the key points are to select an appropriate
time-step to ensure the uncoupling of flow transport, particle
transport and particle coagulation, and, to simulate spatiotempo-
rally-dependent coagulation process, which will introduced in
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the following text. The resultant Eulerian–Lagrangian–PBMC mod-
el (its flowchart is shown in Fig. 2) can be numerically solved
through the following steps.

Step 1: the boundary conditions are characterized, and the
space grids are plotted; the fields of two-phase flows are initial-
ized, and the simulation particles with prescribed number are
generated to represent these real particles;
Step 2: Monte Carlo loop starts with different seeds for the ran-
dom number generator. Several MC loops (in general, 3–5
loops) are performed to obtain adequate statistical data. The
average quantities are used as output of the numerical
simulation;
Step 3: Time-step loop starts according to the procedure of
time-driven technique, i.e., the time window [tstart, tend] is dis-
cretized into a number of time-steps by some laws, which will
be described in Section 2.2.
Within one time-step, Steps 4–9 are performed in turn;
Step 4: the nth time-step, Dtn, is estimated according to the
two-phase flow fields as well as the particulate processes at
the end of Dtn�1. The appropriate time-step ensures the uncou-
pling of flow motion, particle motion and particle dynamics;
Step 5: the conservation equations of the continuous phase, i.e.,
Eq. (2), are numerically solved by, for example, an extended ver-
sion of SIMPLE-C (Semi-Implicit Method for the Press-Linked
Equation-Consistent) algorithm. The flow field profiles (i.e.,
the mean velocity �ui, the stress �p, the Reynolds stresses ugiugj,
the turbulent kinetic energy k, the dissipation rate of turbulent
kinetic energy e, etc.) are obtained. The interaction source term
is calculated according to the instantaneous behavior of mark-
ing particles in the local grid.
Step 6: the motion of each simulation particle is tracked in par-
allel. The particle spatial position (xpi) and the particle velocity
(upi) evolve following Eqs. (3)-(4), which can be solved by, e.g., a
second-order Runge–Kutta method.
Step 7: the dynamic evolution of particle population is handled.
Any possible dynamic events of simulation particles in a grid
are described within Dtn. The detailed schemes will be intro-
duced in Section 2.3;
Step 8: the environmental variables of the discrete phase
including the particle number density (�Np), the averaged parti-
cle velocities (�upi) and the particle Reynolds stress (upiupj), are
determined by the ensemble averaging procedure over all sim-
ulation particles in their local grid; these statistical parameters

will be used by the Eulerian–Lagrangian–PBMC model for mul-
tiphase flow fields during the next time iteration. Simulta-
neously, the particle source term is obtained by the scheme of
particle-source-in-cell (PSIC) [55], and then is added to the
flow-phase conservation equations at the beginning of the next
time iteration. The two-phase interaction is considered by the
exchange of flow fields and particle fields;
Step 9: the simulator returns to Step 3 if RnDtn < tend; other-
wise, the current time loop is finished and the next MC loop
is started;
Step 10: if the number of MC loops is less than the specified
value, the simulator returns to Step 2 and the new MC loop is
started; otherwise, the simulator moves to the next step;
Step 11: the averaging on the several MC loops is taken, and the
averaged parameters of two-phase flow fields are outputted.

2.2. The determination of time-step

In order to achieve the uncoupling of the flow motion and the
particle motion, the time-step should be less than the particle
relaxation time scale sp and the eddy lifetime Te (or, the fluid inte-
gral time scale seen by the particle. Te can be estimated from the
local turbulence properties, Te = k/(ae), where a is a model

Fig. 1. The coupling strategy of population balance modeling (PBM) and multiphase
flow models.

Fig. 2. The flowchart for the Eulerian–Lagrangian–PBMC model.
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parameter (for example, in the eddy interaction model Gosman
and Ionnides [56] take a as constant number of 4.978)) [57]. On
the other hand, other special requirements for the time-step are
set in order to take into account particle dynamics by the PBMC
method.

In the first place, time-step is constrained to be less than the
crossing time scale of fluid element to the grid:

Dt �minfLl;k=jupk;ijg ð5Þ

where Ll,k(k = 1, 2, 3) is the length of the grid l in different directions,
and upk,i is the k-direction velocity of particle i. By Eq. (5), the par-
ticle moves in the same grid or to the neighboring grids within Dt.
In addition, it is usually assumed that a simulation particle i located
in grid l may only coagulate with another particle located in the
same grid l. As a result, the computational cost of checking the par-
ticle coagulation events using the PBMC method will be sharply cut
down because the double circle over all grids and all particles is
avoided.

In order to realize the uncoupling of dynamic events, particle i is
restricted to participate in at most one coagulation event within a
time step (although it is possible the total number of coagulation
events within the grid l and the time step is far greater than 1), that
is,

Dt 6 ti;coag ¼ 1=ðV clCi;lÞ ð6Þ

where ti,coag is the time interval of two successive coagulation
events of particle i; Vcl is the volume of grid l; Ci,l (with dimension
of s�1 m�3) is the total coagulation probability of particle i. In our
differentially-weighted MC method, a new probabilistic coagulation
rule for coagulation events between two differentially weighted
simulation particles is derived [48]. In this rule, for a coagulation
event between simulation particle i and j, it is imagined that each
real particle from i undergoes a real coagulation event with a prob-
ability of min(wi,wj)/wi, and each real particle from j does so with a
probability of min(wi,wj)/wj, where wi and wj are the private
weights of particles i and j, respectively. On the basis of the rule,
Ci,l is calculated as:

Ci;l ¼
1

V2
cl

XNst;l

j¼1;i – j

2bijðl; tÞwj maxðwi;wjÞ
wi þwj

� �
¼ 1

V2
cl

XNst;l

j¼1;i – j

½b0ijðl; tÞ� ð7Þ

where Nst,l is the total number of simulation particles in the grid l;
b0ijðl; tÞ is a normalized kernel in the differentially-weighted MC
method that relates not only to the particle states (particle size, po-
sition, velocity and other flow field parameters) but also to their
weights of the two simulation particles.

To sum up, the time-step is restricted to implement the uncou-
pling between the flow motion, the particle motion and the parti-
cle dynamics, as follows:

Dt 6 min sp; Te; min
8l;8i;8k

Ll:k=upi;k

n o
;min
8l;8i

1=ðVclCi;lÞ
� �� 	

ð8Þ

Using the time step determined by Eq. (8), it is concluded that
the evolution of systems is based on the process (the flow and par-
ticle transport, or particle dynamics) that occurs most rapidly. If
particulate events such as coagulation are slow, the multiphase
flow fields update due to their flow, resulting in the spatial diffu-
sion of PSD. If on the other hand, the dynamic events of particles
are fast relative to particle transport, the particle fields evolve
due to their transport and dynamics, resulting in the spatiotempo-
ral evolution of PSD.

2.3. The simulation of coagulation event within a grid and an
adjustable time-step

The MC simulation of the population balance bases on convert-
ing kinetic rate equations into probabilities and selecting the rele-
vant events by means of random numbers. It differs notably from
the Lagrangian particle tracking method in that no information
about the particle spatial position is needed. Although the exact
position of simulation particle can be obtained using the Euleri-
an–Lagrangian model described above, in the PBMC method the
simulation particles have no exact position but belong to a grid.
In a grid the multiphase flow fields are considered to be spatially
homogeneous, while spatially inhomogeneous among different
grids. Thus, the general PBMC method for particle dynamics in a
presumed spatially homogeneous system can be directly used to
capture coagulation dynamics within a prescribed time step Dt
(by Eq. (8)) and within each grid in parallel. Here the differen-
tially-weighted MC method is introduced.

As a first step, at the end of time-step Dt the total coagulation
probability of a particle i in a grid l is recalculated using the new
multiphase flow fields that are different from the fields at the
beginning of Dt due to flow motion and particle motion within Dt.

Then, the time interval for coagulation dynamics is considered
to be less than the waiting time between two successive coagula-
tion events for a simulation particle, i.e.,

Ds ¼ pNst;l

XNst;l

i¼1

ðV clCi;lÞ
,

ð9Þ

where p is a specified experience parameter, representing the ratio
of the coagulated simulation particle number within grid l and Ds
to Nst,l. p has a value between 2/Nst,l and 1, and is usually set around
0.01–0.05.

Within the third step, a jump Markov model for particle coagu-
lation is constructed, that is, within the time interval Ds the inter-
acting particle pairs are selected with probability b0ij=

P
i

P
j;j – ib

0
ij.

Each simulation particle within grid l is examined successively to
determine whether the particle coagulates within Ds and Vcl,
and, if the particle coagulates, who is its partner. As for simulation
particle i, the probability of a coagulation event of i taking place
within Ds and Vcl is an exponentially distributed random variable,
that is:

P0coag;iðDsÞ ¼ 1� expð�VclCi;lDs=2Þ ð10Þ

Once a random number r from a uniform distribution in the
interval [0,1] is less than P0coag;iðDsÞ, i is allowed to coagulate. The
coagulation partner of particle i is then found based on the proba-
bility P0ij ¼ b0ij=

PNst
k¼1;k – ib

0
ik


 �
. Usually, either the cumulative proba-

bilities method or the acceptance–rejection method is used to
select the coagulation partner. In the cumulative probabilities
method, simulation particle j is the coagulation partner once the
following condition is met:

Xj�1

k¼1

P0ik 6 r 6
Xj

k¼1

P0ik ð11Þ

While in the acceptance–rejection method, a randomly selected
particle j is accepted as coagulation partner of i if the following
condition is met:

r � b0ij=max
8k;8m
ðb0kmÞ ð12Þ

Subsequently, the private weights and other states of these
coagulated particles are recalculated according to the probabilistic
coagulation rule. As for the i–j coagulation event, two new simula-
tion particles replace the ‘‘old’’ particles i and j, as formulated by
Eq. (13):
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if wi – wj;

w�i ¼maxðwi;wjÞ�minðwi;wjÞ; v�i ¼vmjwm¼maxðwi ;wjÞ;

u�pk;i¼upk;m

��
wm¼maxðwi ;wjÞ

; x�pk;m¼ xpm;k

��
wm¼maxðwi ;wjÞ

w�j ¼minðwi;wjÞ; v�j ¼v iþv j;

u�pk;j¼ðv iupk;iþv jupk;jÞ=ðv iþv jÞ; x�pk;j¼ xpk;m

��
wm¼minðwi ;wjÞ

8>>>>><
>>>>>:

if wi¼wj;

w�i ¼wi=2; v�i ¼v iþv j;

u�pk;i¼ðv iupk;iþv jupk;jÞ=ðv iþv jÞ; x�pk;i¼ xpk;i

w�j ¼wj=2; v�j ¼v iþv j;

u�pk;j¼ðv iupk;iþv jupk;jÞ=ðv iþv jÞ; x�pk;j¼ xpj;k

8>>><
>>>:

ð13Þ

where the asterisk indicates a new value of weight or state after the
coagulation event; vi is the volume of simulation particle i; upk,i and
xpk,i are the velocity and position of particle i in the direction k. It is
obvious Eq. (13) satisfies the laws of conservation of mass and
momentum, and the differentially-weighted MC method is able to
conserve the simulation particle number automatically.

At last, the computational cost of MC can further be reduced by
the smart bookkeeping technique that is described in reference
[48]. The key idea of the bookkeeping technique is to update the
total coagulation rate of each simulation particle after each time
interval. Since there are only a few portions of simulation particles
related to coagulation events within a time interval Ds, the total
coagulation rate of a non-coagulated simulation particle after Ds
can be calculated by only updating the normalized kernels be-
tween the non-coagulated simulation particles and the coagulated
simulation particles (their weights and other states may change
according to Eq. (13)). Double counting over all simulation parti-
cles within grid l is thus avoided during the simulation itself,
and, in fact, only has to be performed at the very first time interval.

These steps are repeated until
P

mDsm P Dt. In fact the last time
interval is forced to Dt �

P
m�1Dsm. The flowchart of the differen-

tially-weighted MC method for particle coagulation is presented
in Fig. 3.

The differentially-weighted MC method exhibits an optimal
combination of high statistical accuracy for PSD and low computa-
tional effort. For example, for a same case of Brownian coagulation
(induced by Brownian motion of small particles in fluids) in the
free-molecular regime (where the mean free path of gas molecules
is far greater than the particle diameter), the MC method is capable
of determining the particle size distribution over the full size spec-
trum (shown in Fig. 2), as compared to the constant-number
method.

From Fig. 4 we also see MC simulation exhibits slight fluctua-
tions for these particles smaller than 0.01vavg, which should be as-
cribed to statistical noise of MC simulation. These noise could be
constrained or reduced by some ways, e.g., the shift action (used
to restrict the simulation particle number of each size interval
within prescribed bounds) [48], variance reduction by important
sampling in MC methods [59] and rare-events simulation [60].
On the other hand, the event-driven MC simulation (where special
events are implemented stochastically with probabilities derived
from the mean-field rates of the corresponding process) is more
accurate than the time-event MC simulation presented here be-
cause events are fully uncoupled among different time steps, on
cost of more CPU time. In fact we [61] unified event-driven mode
and time-driven mode of MC simulation for spatially averaged
PBM. It is straightforward to couple the event-driven MC with
the multiphase flow models.

3. Model validation

Depending on Stokes number (St) of particles (rather than par-
ticle size), they can be divided into three catalogues: fine particle
(St?0), finite-inertia particles (0 < St <1), and coarse particles

(St?1). The analytical solutions of turbulence-induced coagula-
tion rates were obtained only for the limiting cases such as fine
zero-inertia particles [62] and coarse high-inertia [63] particles.
The limiting case of coarse particles is used to validate the PBMC
method for particle coagulation in a spatially inhomogeneous sys-
tem. As for the coarse particles, the dynamic relaxation time is
much greater than the turbulence temporal macroscale time, and
particles are thus statistically independent, i.e., their relative mo-
tion is zero-correlated and is similar to the chaotic motion of mol-
ecules in kinetic theory (the so-called hypothesis of molecular
chaos). This case is allowed to not take account of complex turbu-
lent flow models and the two-ways coupling of the continuous and
discrete phases, and only focus on particle motion and particle
dynamics. Keep in mind that although the simulation case using
for numerical validation is very special (the particles moves freely
(but for coagulations) after initialization and the particle dynamics
is field-independent), the numerical strategy presented here
should be suitable for other real case in theory and its application
in other complex cases (e.g., the flow case with shocks) is
straightforward.

In the initial stage, the monodisperse particles with diameter of
0.01 (all parameters in this case are dimensionless) and with num-
ber of 105 are uniformly distributed in a domain 0 < x < 2p,

Fig. 3. The flowchart of the differentially-weighted MC method for particle
coagulation.
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0 < y < 2p, 0 < z < 2p with periodicity applied in three directions;
and the particle velocity satisfies Maxwell distribution with the
average kinetic energy per unit mass (�ep) of 1. Simulation particles
with number of 80,000 are uniformly distributed in (16 � 16 � 16)
grids, and the simulation time is set as 5.

Within the kth time-step, the position of simulation particle i is
first calculated as: (xpi)k = (xpi)k�1 + (upi)k�1Dtk; then, if particle i
does not undergo a coagulation event with the time step Dtk, it
conserves the original velocity, statistical weight and volume unaf-
fected within Dtk, otherwise its velocity and other states are deter-
mined by Eq. (13). In this case coagulation dynamics is controlled
by the following analytical coagulation kernel [63]:

bij ¼ ½16pðepi þ epjÞ=3�1=2ðdpi þ dpjÞ2=4 ð14Þ

where dpi is the diameter of particle i, and epi is the kinetic energy
per unit mass of simulation particle i. epi is calculated as
ðu2

pi;1 þ u2
pi;2 þ u2

pi;3Þ=2.
Although the analytical solution of coagulation kernel exists in

the limiting case, it is difficult to obtain the analytical solutions of
the temporal and spatial evolution of particle size distribution. Di-
rect numerical simulation (DNS) has provided an accurate ‘‘model-
free’’ representation of two-phase turbulent flows. The numerical
result of DNS is selected as a standard reference to validate the
PBMC method for particle coagulation. More details on DNS simu-
lation are demonstrated in Refs. [64–66]. In the DNS method, every
real particle is directly tracked, and the proactive method with
sorting [66] is used to check for dynamic interactions between par-
ticles within a time-step.

The average collision rate per unit volume, Nc (with dimension
of m�3 s�1), is calculated in the MC and DNS methods as following:

Nc ¼ Ntc=ðDtVtÞ ð15Þ

where Ntc is the total number of the detected coagulation events
within a time-step Dt, Vt is the volume of the computational do-
main. Fig. 5a demonstrates the time evolution of the average coag-
ulation rate per unit volume predicted by the MC and DNS methods,
for which analytical solution does not exist. The average coagula-
tion rate per unit volume decreases with time due to the decreasing
particle concentration along with the occurrence of coagulation
event. We further calculated the relative error dNC in the average

coagulation rate per unit volume. dNC ¼ jNðDNSÞ
c � NðMCÞ

c j=NðDNSÞ
c ,

where the superscript ‘‘DNS’’ represents the result of the DNS sim-
ulation and ‘‘MC’’ means the result of the MC method. From Fig. 5b
it is found the relative error dNC fluctuates within 10% and 20% on
the whole. The relatively large error is ascribed to the following fac-
tors: (1) in the initialization the particles are stochastically and
homogeneously distributed within the computational domain.
And each particle is given stochastic velocities in three dimensions
(the particle velocity satisfies Maxwell distribution with the aver-
age kinetic energy per unit mass of 1). The stochastic initialization

Fig. 4. Self-preserving particle size distribution for Brownian coagulation in the
free-molecular regime among results obtained from the differentially-weighted MC,
the constant-number method and a discrete-sectional method [58]. The dimen-
sionless particle volume g is defined as v=vavg, the dimensionless number
distribution function W = Mn(v, t)/N2, where vavg is the mean particle volume;
n(v, t) is the particle size distribution function at time t; M and N is the total mass
concentration and number concentration of particles.

Fig. 5. The average coagulation rate per unit volume (Nc) in the coarse particles. (a)
the time-evolving Nc; (b) the relative error in the average coagulation rate per unit
volume (dNC); and (c) the relative error in the time-cumulative average coagulation
rate per unit volume (wNC(t)).
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makes the collision and coagulation processes between particles be
stochastic to a certain extent. The coagulation rate thus fluctuates
sharply as time evolves; (2) in the MC simulation the stochastic pro-
cesses are utilized to determine the particle coagulation, while in
the DNS simulation the coagulation events are deterministically de-
tected based on the trajectory-crossing. Fig. 5c also shows the rela-
tive error in the time-cumulative coagulation rate, WNCðtÞ ¼
j
R t

0 NðDNSÞ
c dt �

R t
0 NðMCÞ

c dtj=
R t

0 NðDNSÞ
c dt. It is obvious that the time-

cumulative relative error wNC(t) is generally constrained within
2% for relatively long evolution time.

Fig. 6a shows the time evolution of the moments of particle size
distribution and the total particle momentum. The particle number
concentration (Np) decreases along with time, however, the geo-
metric mean diameter (dpg) increases along with time. The geo-
metric standard deviation (rpg) deviates the initial value, 1, more
and more, which indicates particle population is inclined to poly-
dispersity along with time, or saying, the population is sized more
differently. The total particle momentum (Mp) is strictly conserved

in the two methods. Fig. 6b presents the relative error in the geo-
metric mean diameter, number concentration, and geometric stan-
dard deviation. All of these relative errors are very small, generally
kept below 1%. It is obvious that the results of the MC method
agree well with that of DNS simulation.

The particle size distribution functions at some specified time-
points are shown in Fig. 7, where the abscissa k is the number of
primary particles, Pk is the probability of obtaining a aggregate
containing k primary particles, or, the ratio of particles of volume
vk (vk = kv0, v0 is the monomer volume, k is the number of primary
particles) to the total particle number. The inset in the top right
corner of Fig. 7, where the Y-axis (Pk) is scaled linearly instead of
logarithmically (as in Fig. 7), shows the size distribution of small
aggregates (k 6 5). The MC results for these small aggregates agree
well with the DNS results. With respect to these larger aggregates,
although there is being a few deviations between the MC and DNS
simulations, the MC method is able to reproduce qualitatively sim-
ilar results as the DNS reference on the whole. Generally the MC

Fig. 6. (a) The time evolution of the moments of particle size distribution and (b) the relative error in the moments of particle size distribution.
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solution is deviating from the DNS solution as aggregates grow up.
At t = 5 the predicted size distribution of large aggregates (with
more than eight primary particles) by the MC obviously deviates
from the DNS solution. In order to examine whether the numerical
precision of the MC deteriorate more and more as time evolves, we
further extended the evolution time (here until t = 10) of coagula-
tion dynamics in the simulations. It is interesting the MC results at
t = 10 agree better with the DNS results than at t = 5. It indicated
that the MC does not show the trend of precision deterioration
as time increases. In fact, although particle number concentration
decreases and particle population is inclined to polydispersity
more and more as time evolves, the new MC method is able to
adapt automatically itself to the extension of particle size distribu-
tion, that is, some simulation particles with smaller private
weights are reproduced automatically to represent these less-pop-
ulated regions (e.g., these larger particles, v > 8v0, which only occu-
py a few portion of number in population). Keep in mind that the
PBMC is capable of tracking all particles in theory. This is highly
relevant for engineering applications, since it is important that
no information on the evolving particle population is lost, particu-
larly in relation to particles that are few in number but exhibit spe-
cial physical and chemical properties. The good performance of the
PBMC method in noise reduction and range extension should be

attributed to the differentially weighting of simulation particles,
which effectively increase the number of simulation particles to
represent these less-populated real particles. The results presented
here provided strong support that the new MC method is capable
of capturing the temporal evolution of particle size distribution
with high precision.

Both the MC method and DNS can obtain the detailed informa-
tion on the particle fields including the spatiotemporal distribution
of particle population, the fields of particle velocity, kinetic energy,
and momentum, which are determined by the ensemble averaging
procedure over all simulation particles in their local grid. These
temporally and spatially distributed environmental variables are
further compared to one another. Fig. 8 is instantaneous geometric
mean diameter (dpg) at a specified time (t = 2.5) and at a specified
two-dimensional section (z = p). The spatial distributions of parti-
cle number concentration (Np) and particle momentum (mpup) at
the time t = 2.5 and the section z = p are shown in Figs. 9 and 10,
respectively. Although MC results deviate from DNS results in
some regions, the two results at several specified distance in x-
dimension direction, i.e., x = 0.196, 0.982, 2.159, 3,338, 4.516, and
6.087, evolve with similar tendency along the y-dimension direc-
tion on the whole. From these results shown in Figs. 5–10, we con-
cluded that the new MC method is able to predict reasonably the

Fig. 7. Particle size distribution at the specified time points.

Fig. 8. The spatial distribution of geometric mean diameter of particles at the specified time point (t = 2.5) and section (z = p).
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statistical parameters such as the coagulation rate but also the
temporal and spatial evolution of particle fields.

With regards to numerical difference between MC and DNS
simulations in the spatial distributions of particle size distribu-
tions, we still emphasized the following two main factors (as ex-
plained for the coagulation rate): (1) the stochastic initialization
for particle position and velocities, and (2) stochastic coagulation
events in the MC simulation. Increasing the number of particles
or the number of MC runs can make the MC results be closer to
the DNS results; however, the numerical strategy for variance
reduction is not very feasible in engineering application because
of complex programming and extensive computational cost. The
variance reduction in the spatial distribution of PSDF need be fur-
ther studied in the future.

All of simulations are performed in the same desktop PC
equipped with CPU of Intel(R) Core(TM)2 Quad Q9300 @2.5 GHz,
memory of 3.5 GB. The computational costs of the MC and DNS
are 148 s and 1460 s, respectively. The reduction of computational
cost in the MC simulation owes to the less particle number and the
utilization of stochastic processes to capture coagulation events.
On the contrary, DNS tracks all of real particles and detects the
occurrence of coagulation events based on the trajectory-crossing.

4. Conclusion and discussion

In this study, we proposed for the first time an algorithm to cou-
ple the differentially-weighted PBMC method for particle dynamics
(here coagulation process) with the Eulerian–Lagrangian model for
hydrodynamics. It is equivalent to solving simultaneously the pop-

ulation balance equation for the particulate processes and the con-
servation equations for the surrounding multiphase fluids. The
resultant Eulerian–Lagrangian–PBMC model (or the CFD–PBM
model) is able to predict the spatiotemporal evolution of particle
size distribution in a spatially inhomogeneous system accounting
for mutual coupling of the particle dynamics with the hydrody-
namics. The coupling is based on the selection of an appropriate
time-step within which the fluid transport, the particle transport
and the particle dynamics are uncoupled each other and then sep-
arately and successively simulated. The evolution of systems is
based on the process (the flow and particle transport, or particle
dynamics) that occurs most rapidly. If particulate events such as
coagulation are slow, the multiphase flow fields update due to
their flow, resulting in the spatial diffusion of PSD. If on the other
hand, the dynamic events of particles are fast relative to particle
transport, the particle fields evolve due to their transport and
dynamics, resulting in the spatiotemporal evolution of PSD.

For a limiting case of coarse high-inertia particles, the PBMC
method is compared to the direct numerical simulation (DNS). It
is found the PBMC method yields reasonably closer predictions of
spatiotemporal PSD but its computational expense is less by a fac-
tor of 10. It is worth noting that the PBMC method is capable of
guarding the statistical accuracy in determining PSD and of track-
ing all particles, e.g., these with low number concentrations.

Not only does the PBMC method provide a highly efficient and
precise numerical scheme for the spatiotemporal evolution of
PSD. It also demonstrates friendly expansibility towards the other
models in different engineering and scientific fields. For example,
the MC is capable of considering the elaborate collision model such
as the sticking–sliding collision model and the particle–wall colli-

Fig. 9. The spatial distribution of number concentration of particles at the specified time point (t = 2.5) and section (z = p).

Fig. 10. The spatial distribution of momentum of particles at the specified time point (t = 2.5) and section (z = p).
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sions, and the other dynamic events such as breakage, condensa-
tion/evaporation, nucleation, deposition, and chemical reactions.
On the other hand, the MC can be coupled to any Euler–Lagrangian
models such as stochastic trajectory model and deterministic tra-
jectory model. For example, it is possible to model the drag force
through other complex models rather than a relaxation time pre-
sented in Eq. (4). The friendly expansibility is ascribed to the mu-
tual uncoupling scheme of the flow motion, particle motion and
particle dynamics.

Thanking to the good performance of the Eulerian–Lagrangian–
PBMC model, it is capable of serving for the inverse problem of
PBM and determining kinetic parameters of dynamic events. The
inverse problem method can be utilized to determine these kernel
models and model parameters (which are usually unclear for real
cases but necessary for PBM) from experiments. For example,
parameter identification using the inversion of the PBMC is feasible
through an experimental design technique combined with a re-
sponse surface methodology [67]. The inverse problem in popula-
tion balance is usually based on the spatially-average PBM, and the
identified model parameters cannot include the effects of spatially
inhomogeneous fields and particle dynamics. The PBMC presented
in the paper is able to gain the spatiotemporal evolution of PSDF
and may thus explore optimal model parameters which are most
close to field-dependent experimental measurements.

Although the Eulerian–Lagrangian–PBMC model (or CFD–PBM
model) exhibits good performance and friendly expansibility, there
is still long way for accurate control of particulate processes, opti-
mized design and operation of corresponding process equipments.
We view the CFD–PBM model presented here as a starting point to
the end. One of main limitations of the CFD–PBM model for pro-
cess/equipment design and control is long simulation time for
large system because the Eulerian–Lagrangian model for multi-
phase flow fields and the PBMC for particle dynamics are both
time-consuming. Considering the dramatic increase in computa-
tional power, and the emergence of new parallel computing (such
as GPU parallel computing), and the improvement in CFD–PBM
simulation efficiency, fast simulation to the end become more
and more feasible. Other efforts for the CFD–PBM model may in-
clude capability to deal with complex and dynamic boundary con-
ditions, ease to use for complex simulation cases, friendly interface
for initialization and post-treatment, and so on.
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