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Abstract  The process of dynamic evolution in dispersed systems due to simultaneous 
particle coagulation and deposition is described mathematically by general dynamic 
equation (GDE). Monte Carlo (MC) method is an important approach of numerical solu-
tions of GDE. However, constant-volume MC method exhibits the contradictory of low 
computation cost and high computation precision owing to the fluctuation of the number of 
simulation particles; constant-number MC method can hardly be applied to engineering 
application and general scientific quantitative analysis due to the continual contraction or 
expansion of computation domain. In addition, the two MC methods depend closely on the 
“subsystem” hypothesis, which constraints their expansibility and the scope of application. 
A new multi-Monte Carlo (MMC) method is promoted to take account of GDE for simulta-
neous particle coagulation and deposition. MMC method introduces the concept of 
“weighted fictitious particle” and is based on the “time-driven” technique. Furthermore 
MMC method maintains synchronously the computational domain and the total number of 
fictitious particles, which results in the latent expansibility of simulation for boundary con-
dition, the space evolution of particle size distribution and even particle dynamics. The 
simulation results of MMC method for two special cases in which analytical solutions exist 
agree with analytical solutions well, which proves that MMC method has high and stable 
computational precision and low computation cost because of the constant and limited 
number of fictitious particles. Lastly the source of numerical error and the relative error of 
MMC method are analyzed, respectively.  

Keywords: multi-Monte Carlo method, general dynamic equation, coagulation, deposition, particle size dis-
tribution, dispersed systems. 

The phenomena of simultaneous particle coagulation and deposition are of great ubiq-
uity and of key importance in nature and various engineering applications, including the 
precipitation and downfall of rain, ice, snowflakes, fog and hail, the scavenging of fly ash 
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in electrostatic precipitator of power plant, the transplantation of fume in smoke flue of 
pulverized coal-fired plant, nuclear reactor analysis modeling aerosol’s diffusion and 
deposition when blasting, the suspension and sedimentation of emulsoids and floccules in 
chemical engineering, the migration of indoor air pollutant, and the production of 
nanoparticle agglomerates, etc. Both particle coagulation, in which two particles collide 
together and form a bigger particle, and deposition, where one particle settles and does 
not participate in the dynamic evolution of particle population any longer, result in the 
time evolution of particle size distribution (PSD). Because many physico-chemical prop-
erties of particle population, such as light scattering, electrostatic charging, toxicity, ra-
dioactivity of suspended particle, sediment and capturing strategy, depend heavily on 
their size distribution, the time evolution of size distribution is of fundamental interest 
and a key issue. The familiar general dynamic equation (GDE) describes the time evolu-
tion of PSD for simultaneous coagulation and deposition as following[1]: 
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GDE, in which only binary coagulation is considered, is based on the assumption of 
dilute particles and molecule chaos. In eq. (1), np(v,t) is the function of particle size dis-
tribution at time t, so that np(v,t)dv is the number concentration of particles whose sizes 
range between v and v+dv per volume unit at time t; the dimension of np(v,t) is m−3·m−3; 
the term on the left-hand side of eq. (1) describes the change in the number concentration 
of particles of volume v with time; R(v) is the deposition kernel or deposition coefficient 
for a particle with volume v, s−1, describing the probability of deposition event of particle 
with volume v per time unit; R(v) encapsulates all kinds of deposition mechanism such as 
gravitational sedimentation, Brownian diffusion, turbulent diffusion, thermophoresis, 
electrostatic forces, and wet removal, etc. The “deposition” term on the right-hand side 
describes the loss in number concentration due to the deposition of particle with volume 
v; β(v,u) is the coagulation kernel for two particles with volume v and u, m3·s−1; the 
physics of the problem, such as Brownian diffusion, turbulent transport effect, accumula-
tion effect and gravitational settling, is encapsulated in the coagulation kernel; the “co-
agulation” term describe the gain and loss in number concentration due to coagulation, 
where the first part accounts for the formation of particle with volume v and the second 
part shows the disappearance of particle with volume v due to coagulation with any par-
ticle. It is noticed that the coagulation kernel and deposition kernel of particles may 
change along with time. 

GDE is a typical nonlinear partial integro-differential equation. Generally speaking, 
there are not analytical solutions, and more unfortunately the traditional numerical 
methods (such as finite volume method and finite difference method) are difficult to take 
GDE into account when polydispersed particle population as well as nonlinear models of 
coagulation and deposition kernel. The popular numerical solutions of GDE include 
moments of method[2], sectional method[3], discrete method[4], discrete-sectional 
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method[5], and Monte Carlo (MC) method[6－9]. Monte Carlo method has the same physi-
cal foundation and physical assumption with GDE[10]. The discrete nature of MC method 
adopts itself naturally to discrete dynamic events in dispersed systems. The advantages of 
MC method lie in that[6]: it can gain information about history, trajectory crossing and 
internal structure of particles; it can take easily account of polydisperse and 
multi-component population; it can address restructuring, coating, chemical reaction, 
fractal aggregation and even rapping re-entrainment; its algorithms for solving GDE are 
easily programmed. So MC method is fully developed and applied. MC method is how-
ever time-consuming comparatively. With regard to ordinary “constant-volume” 
method[7], the total number of real particles decreases continuously when simultaneous 
coagulation and deposition, so does the total number of simulation particles. Since statis-
tical precision of the MC is inversely proportional to the square root of the total number 
of simulation particles[7], “constant-volume” method must increase the initial number of 
simulation particles in order to protect against statistical fatigue, which burdens worse 
computation cost of the MC method. So “constant-volume” MC method exhibits the 
contradiction of low computation cost and high computation precision. With respect to 
“constant-number” method[8], the total number of simulation particles is constant and the 
simulation volume is continuously adjusted so as to contain the same number of simula-
tion particles. “Constant-number” method can maintain constant statistical accuracy and 
can simulate growth over arbitrarily long time with a finite number of simulation parti-
cles. However, it can hardly be applied in engineering and scientific quantificational 
analysis, and can hardly take account of boundary conditions, space diffusion of size 
function and flow-particle dynamics, owing to the expansion or contraction of the simu-
lated domain along with dynamic evolution in order to maintain constant number of 
simulation particles in the domain.  

The paper promoted a new multi-Monte Carlo (MMC) method to solve GDE for si-
multaneous coagulation and deposition. MMC method has the characteristics of both 
constant number and constant volume method. It assorts with computation cost and 
computation precision, and has the latent expansibility of simulation for the space evolu-
tion of PSD, boundary conditions and even particle dynamics. 

1  Description for multi-Monte Carlo method 

1.1  The introduction of weighted fictitious particle 

A reasonably sized dispersed system contains approximately 1010 or more particles, 
however, Monte Carlo code can only examine 103－107 particles at a time on fast PCs 
because of the limitation of CPU speed and memory capacity. So in any known Monte 
Carlo method[6－9] a “subsystem” of the total system is considered. “Subsystem” contains 
103－107 simulation particles, where each of simulation particles represents some real 
particles, says, each of simulation particles has a value of number-weight. Ones assume 
the whole system is fully-stirred and spatially isotropic, and the subsystem satisfies the 
constraint of periodic boundary conditions, i.e., as some particles move out from one 
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boundary of the subsystem, some identical particles move in from the symmetrical 
boundary of the subsystem. By those hypotheses the behavior of the subsystem dupli-
cates the system as a whole. The number-weight in constant-volume MC is same for all 
particles and constant during simulation. As far as constant-number MC is considered, in 
the cases of breakage and nucleation that result in net generation of real particles, the 
volume of “subsystem” is contracted in order to maintain the constant number of simula-
tion particles; with mechanisms such as coagulation and deposition which make for net 
depletion of real particles, this amounts to the expansion of the simulated “subsystem”. 
Factually the number-weight in constant-number MC is the same for all particles but 
varies with time. 

Different from the above approaches, MMC method introduces the concept of 
“weighted fictitious particle” in order to maintain the volume of computational domain 
and the number of fictitious particles. Real particles which have same or similar volume 
can be considered to have the same properties and, hence, the same behaviors. Those real 
particles can be represented by one or several weighted fictitious particles, where ficti-
tious particles are an indicator of those real particles. So the time evolution of fictitious 
particles duplicates that of real particles. 

Fig. 1 shows a pictorial representation of weighted fictitious particle. As shown in Fig. 
1, every class of real particle population is represented by some fictitious particles, and 
the volume of fictitious particle is just the volume of those represented real particles. 
Those fictitious particles of the same class have the same value of transform-weight “w”, 
however, the different value for the different classes. The value of transform-weight “w” 
of one fictitious particle is equal to the number concentration of those real particles rep-
resented by the fictitious particle. Generally speaking, MMC method still maintains high 
computation precision even though the value of “w” reaches to the magnitude of O(103)
－O(104). 
 

 
 

Fig. 1.  The steps of numerical selection of transform-weight “w” of fictitious particle. 
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According to the different consequence of the dynamic events, the transform-weight 
“w” and volume of those related fictitious particles are adjusted following each time step; 
instead, both the computational domain and the number of fictitious particles are main-
tained during the time evolution of particle population, which will be described detailedly 
in the following text. In fact, only those fictitious particles which participate in coagula-
tion and deposition event change their “w” and volume with time in MMC method. 

Although the concept of “weighted fictitious particle” is introduced, the total number 
of fictitious particles is still a large magnitude as for the whole system with a large num-
ber of real particles. Under the condition, MMC method must introduce the concept of 
“subsystem”, alike other MC methods. If the total number of real particles in a whole 
system is small, or, one fictitious particle is allowed to represent more real particles at the 
cost of low computation precision, the total number of fictitious particles might be within 
the scope of computer ability. Under the condition, MMC method can discard the hy-
pothesis of “subsystem” and, then, has the expansibility of simulation for the space evo-
lution of size distribution, boundary conditions and even gas-particle dynamics coupling 
with two-phase turbulent model[11]. 

1.2  The scheme of MMC method considering simultaneous coagulation and deposition 

MMC method is based on the “time-driven” technique[9], saying, each of fictitious 
particles is tracked and any possible events are considered within one time step Δt. It is 
considered for the “time-driven” technique that any coagulation events and any deposi-
tion events are decoupled within a sufficiently small time step Δt, that is, the evolution is 
decomposed into two distinct processes: coagulation and deposition. The scheme of 
MMC method for simultaneous coagulation and deposition is shown in Fig. 2. It is no-
ticeable that coagulation and deposition event does not change immediately the proper-
ties and the behaviors of the tracked fictitious particles and the involved fictitious parti-
cles within current time step. The changes will occur in the next time step. So the treat-
ment of coagulation and deposition event should be delayed until the end of current time 
step, which refers to Fig. 2. 

The “time-driven” MC method, which needs explicit time discretization, has generally 
more computation cost comparing with the opposite “event-driven” MC method[7]. 
 

 
 

Fig. 2  The scheme of MMC method for simultaneous coagulation and deposition. 
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However, because numerical solutions of two-phase turbulent model is mostly based on 
the “time-driven” technique, the “time-driven” MC method can coupled with those nu-
merical solutions more easily and then has stronger expansibility than the “event-driven” 
MC method. 

1.3  The setting of time step 

The setting of time step is a key of MMC method. As for the “time-driven” MC tech-
nique, in order to track any fictitious particles and any events, the number of coagulation 
or deposition events of one fictitious particle must be less than or equal to one within 
time step Δt. 

The total coagulation probability of fictitious particle i is firstly investigated. Ones as-
sume the total number of real particles is N and fictitious particles Nf within computa-
tional domain V, and one fictitious particle is considered as one group of real particles. 
Thus the number of coagulation event occurring among ith-group (fictitious particle i, 
number concentrations per unit volume wi) and jth-group particles (fictitious particle j, 
number concentrations per unit volume wj) per unit time per unit volume is given by 
 ,  (2) ij ij i jNC w wβ= × ×

where βij is the coagulation kernel for the two particles i and j. 
For like particles, the number of coagulation event per unit time per unit volume is 

taken as[12]: 
 ( )1 2.ii ii i iNC w wβ= × × −  (3) 

So NCi, the total number of coagulation event of fictitious particle i per unit time per 
unit volume, is computed by 
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Because fictitious particle i represents wi real particles, the average number of coagu-
lation events of each real particle with any real particle per unit time is followed as 
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Since fictitious particle i is an indicator of those represented real particles, the average 
number of coagulation events of fictitious particle i (including coagulation event within 
unlike particle and within like particle) per unit time is equal to Ci, which is also called as 
the total coagulation probability of fictitious particle i. 

Then, the coagulation time scale of fictitious particle i, within which only one coagu-
lation event occurs, is expressed by 
 ,coag 1 .it = iC  (6) 

According to the definition of deposition kernel, the deposition time scale, within 
which only one deposition event occurs, is as follows: 
 ,depo 1 ,it = iR  (7) 

where Ri is the deposition kernel of fictitious particle i. 
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In MMC method, time step Δt should be less than or equal to the minimum coagula-
tion time scale (min(ti,coag)), and also be less than or equal to the minimum deposition 
time scale (min(ti,depo)), that is: 

 ( ) ( ){ }
f f1,..., 1,...,
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t C

= =
Δ ≤ iR  (8) 

In order to increase the number of Monte Carlo loop, time step is usually defined as 

 ( ) ( ){ }
f f1,..., 1,...,

min 1 max ,1 max ,ii N i N
t Cα

= =
Δ = × iR  (9) 

where the multiplicative constant, α, has the value of 0.01 or less.  
Particle size distribution evolves with the occurrence of dynamic events, which will 

change the minimum coagulation and deposition time scale. So time step must be ad-
justed real-time-wise, not just as a fixed value, which refers to Fig. 2. 

1.4  The treatment of particle coagulation event 

The process includes three steps: the judgment of the occurrence of coagulation event, 
the choice of coagulation partner, and the consequently treatment of coagulation event. 

(i) The judgment of the occurrence of coagulation event.  It is deemed that the proc-
ess of dynamic evolution due to particle coagulation is a Markov process[7]. As far as a 
standard procedure for a Markov process is considered, the probability of fictitious parti-
cle i interacting with any fictitious particle within Δt, Prcoag,i(Δt), is represented by an 
exponential function[9]: Prcoag,i(Δt)=1−exp(− CiΔt) ≈ CiΔt. In the paper the Nanbu 
method[13] is used to judge the occurrence of coagulation event and to search coagulation 
partner, which is shown in Fig. 3. Firstly a random number r1 from a uniform distribution 
in the interval [0,1] is generated. Then a coagulation event is calculated when the random 
number r1 becomes smaller than the coagulation probability within time step Δt, i.e. if r1

≤CiΔt fictitious particle i will be ascertained to coagulate with its partner. 
 

 
 

Fig. 3.  The schematic diagram of the Nanbu method. 
 
(ii) The choice of coagulation partner.  If fictitious particle i will be related to one 

coagulation event, the Nanbu method[13] is still used to search its coagulation partner. 
Firstly, the probability of fictitious particle i coagulating with any other fictitious particle 
j is expressed as Pij = wj×βij×Δt, and the coagulation probability among the same fictitious 
particle i is expressed as Pii=[(wi −1)/2]×βii×Δt. Obviously, 
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Secondly the random number r1 is still used for the determination of coagulation part-
ner. If the following relation is satisfied, it is considered that the tracked particle i coagu-
late with fictitious particle j: 
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(iii) The consequently treatment of coagulation event.  One of important points of 
MMC method is to maintain the total number of fictitious particles during the process of 
coagulation in order to protect against statistical fatigue. The consequently treatment of 
coagulation event concentrates the idea of constant number of fictitious particles and 
constant computational domain in MMC method. MMC method adjusts the trans-
form-weight “w” of the “coagulated” fictitious particle to realize both “constant-number” 
MC and “constant-volume” MC. 

When the tracked fictitious particle i (its transform-weight wi, its volume vi) coagu-
lates with coagulation partner j (its transform-weight wj, its volume vj), it means, some 
real particles represented by i coagulate with those real particles represented by j. Co-
agulation between real particle A with volume vA and real particle B with volume vB re-
sults in a new real particle with volume (vA+vB). Regardless of the factual progress of the 
coagulation event between the two fictitious particles i and j, as a result, those “old” real 
particles represented by i and j are replaced by the “new” real particles, and the total 
number of those “new” real particles is the half of the total number of those “old” real 
particle, saying, (wi+wj)/2. In order to maintain the total number of fictitious particles, 
both the tracked fictitious particle and its partner are conserved; instead, their trans-
form-weight and their volume are adjusted to externalize the consequence of coagulation 
event. It is considered that the transform-weights of both the tracked fictitious particle i 
and its partner j are halved respectively, and the volumes of both i and j are changed as 
“vi+vj”. Because every fictitious particle will be judged the occurrence of coagulation 
event, a coagulation event of particle pairs is double-counted within each time step Δt. If 
the tracked fictitious particle is i, only some properties of the current tracked fictitious 
particle are changed and there are no any changes in its partner, saying, 
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When the tracked particle is assigned to fictitious particle j in turn, its coagulation 
partner will be fictitious particle i in theory and the same measures are taken: 
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The measures not only conserve the number of fictitious particles, but also maintain 
the computation domain. 

Strictly speaking, MMC method conserve perfectly the total volume of particle popu-
lation before and after one coagulation event only when wi=wj or vi=vj, saying, 
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Obviously, the transform-weight and volume of the tracked fictitious particle may be 
not always equal to those of the partner during the process of dynamic evolution, so 
MMC method for coagulation event exhibits some numerical error, which is the inevita-
ble cost for the purpose of the forcibly maintenance of constant number and constant 
volume. If the difference between transform-weight and volume of the tracked fictitious 
particle and those of the partner is small, the propagation and delivery of numerical error 
can be restrained by means of the repetitious MC loops and the averaging operation. 

1.5  The treatment of particle deposition event 

The process involves the two-step procedure: the judgment of the occurrence of depo-
sition event, and the consequently treatment of deposition event. 

(i) The judgment of the occurrence of deposition event.  Similarly, the occurrence of 
deposition event is considered as a Markov process, and Prdepo,i(Δt)=1−exp(−RiΔt)≈RiΔt, 
where Prdepo,i(Δt) is the deposition probability of fictitious particle i within Δt. So, as for 
a standard Monte Carlo simulation, if 
 2 ir R tΔ≤  (14) 

is satisfied, deposition event of fictitious particle i occurs; otherwise fictitious particle i 
does not deposit, and will be tracked within next time step. Here r2 is the random number 
from a uniform distribution in the interval [0,1]. 

(ii) The consequently treatment of deposition event.  The direct consequence of 
deposition event is net depletion of real particles. If any measures are not taken, the total 
number of fictitious particles will continue to decrease. If the tracked fictitious particle A 
is ascertained to deposit, the following measures are taken. Firstly a random number r3 
from a uniform distribution in the interval [0,1] is used to select fictitious particle B from 
fictitious particle array, the serial number of which is integer[r3×Nf], where integer[] in-
dicates the integer part of its argument. The progress of random choice will be repeated 
until the selected fictitious particle B is not the tracked fictitious particle A. Secondly the 
randomly selected fictitious particle B (transform-weight wB, volume vB) is divided 
equally into two fictitious particles —— C (transform-weight wC, volume vC) and D (trans-   
form-weight wD, volume vD), where wB=2wC=2wD, and vB=vC=vD. Fictitious particle C is 
placed in the position of the tracked fictitious particle A, and the randomly selected ficti-
tious particle B is replaced by fictitious particle D. Factually those measures mean that 
the leaving null of the deposited fictitious particle A is filled with the half of the ran-
domly selected fictitious particle B. Those measures not only conserve both the number 
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of fictitious particles and computation domain but also accord with the reality of deposi-
tion event. 

2  Validation for multi-Monte Carlo method 

As for some special coagulation kernel, deposition kernel and initial particle size dis-
tribution, analytical solutions of the time evolution of PSD can be obtained. Those ana-
lytical solutions are used to validate MMC method for simultaneous coagulation and 
deposition. 

The initial particle size distribution is represented by an exponential function, i.e. 

 ( ) ( ) g0
p 0 g0,0 ,v vn v N v e−=  (15) 

where N0 is the initial total number concentration of real particles, and vg0 is the initial 
mean volume. In the paper, we choose N0=106 cm−3 and vg0=0.029 μm3. Two special 
cases in which analytical solutions exist are as follows: 

Case 1: constant coagulation kernel and constant deposition kernel, β(u,v)=KC, R(v)= 
KD; 

Case 2: constant coagulation kernel and gravitational deposition kernel, β(u,v)=KC, 
R(v)=KDv2/3; 
where both KC and KD are constant number. Constant coagulation kernel reproduces the 
integral value behavior in the Brownian coagulation. Constant deposition kernel de-
scribes leakage through a hole or crack. Gravitational deposition kernel accounts for 
sediment due to gravitation. Computational conditions of two special cases are listed in 
Table 1. Analytical solutions of two cases refer to ref. [14]. 
 

Table 1  Computational condition of two special cases 
Case KC (cm3·s−1) KB τcoag (s) τdepo (s) τcoag (s) τdepo (s) 

Case 1 6.405×10−10 3.2025×10−4 s−1 2/(K0N0) 1/KB ≈3122.6 ≈3122.6 
Case 2 6.405×10−10 3.3928×10-3 s−1·μm−2 2/(K0N0) 1/(KBvg0

2/3) ≈3122.6 ≈3122.6 

 
In Table 1, τcoag is the characteristic coagulation time scale, and τdepo is the characteris-

tic deposition time scale, and Ω (=τcoag/τdepo) is the ratio between the two characteristic 
time scales. In order to have a real coupling between two processes, Ω is chosen to be 
approximatively equal to 1 in the two cases. 

The initial total number of fictitious particles is set as 3000 for the two cases, and the 
real number of fictitious particles is 3081, that is, one fictitious particle represents about 
325 real particles on the average. The length of time evolution is τcoag/2, i.e., 1561.3 s. In 
order to initialize PSD and collect statistical properties of PSD at some appointed 
time-point, polydisperse particle population is divided into 200 classes between the larg-
est and smallest particle volume in the simulation. Nevertheless, MMC method needs no 
information about bin discretization during simulating, which avoids numerical bias and 
numerical diffusion. In addition, the first-order moment of PSD is defined as M1(t)= 
∫np(v,t)vdv, which denotes the sum of particle volume. 

In Fig. 4 and Fig. 5, we present a comparison between MMC solutions and analytical 
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solutions for Case 1 and Case 2, respectively. Here Fig. 4(a) and Fig. 5(a) show the time 
evolution of total number concentration, geometric mean volume and the first-order mo-
ment for Case 1 and Case 2; the information about PSD at t=750 and 1500 s for Case 1 
and Case 2 is exposed in Fig. 4(b) and Fig. 5(b), respectively. As for Case 1, the total 
number of real particles at t=750 and 1500 s is only 65.43% and 44.57% of initial total 
number, respectively. As for Case 2, the total number of real particles at t=750 and 1500 
s is only 66.62% and 47.10% of initial total number, respectively. Although the total 
number of real particles continues to decrease, the agreement between MMC solution and 
analytical solution is good since the total number of fictitious particles is always kept 
3081. Those simulation results show MMC method has very high and stable computation 
precision. 

It is remarkable that computation cost of MMC method is very low. As for Case 1 and 
Case 2, CPU time is 1564.03 and 350.55 s, respectively. Computational environment is 
as follows: Athlon Xp2500+, 512M. Low computation cost comes mainly from that the 
number of fictitious particles is far less than that of real particles. The most expensive 
part of MMC method is the computation of time step, so even the very complicated co-
agulation kernel and deposition kernel in engineering and nature will not contribute 
 

 
 

Fig. 4.  Time evolution of PSD with constant coagulation kernel and constant deposition kernel. 
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Fig. 5.  Time evolution of PSD with constant coagulation kernel and gravitational deposition kernel. 
 
markedly to computation cost. 

3  Discussion 

3.1  The analysis of numerical errors of MMC method for simultaneous coagulation and 
deposition 

Since it is impossible that every “sub-process” of MMC method is separated and real-
ized numerically, it is difficult to analyze quantitatively and accurately the influence of 
every “sub-process” on computation precision of MMC method. However it is possible 
to analyze qualitatively the source of numerical errors of MMC method for simultaneous 
coagulation and deposition. MMC method is based on time-driven technique, which as-
sumes dynamic events in dispersed systems are decoupled each other within a suffi-
ciently small time step Δt. In fact, within the time-step Δt, there are several coagulation 
and/or deposition events; the same particle may participate in one coagulation event and 
one deposition event within the same interval; the same particle may be involved with 
several coagulation events, acting as the main particle or coagulation partner. Obviously 
those dynamic events may depend on each other and are NOT uncoupled absolutely each 
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other, so the “time-driven” MC method shows so-called “uncoupling error”. The intro-
duction of multiplicative constant α is precisely for the purpose of reducing the “uncou-
pling error”, seeing eq. (9). The smaller multiplicative constant, the fewer coagulation 
events or/and deposition events take place within one time-step and, then, the smaller 
“uncoupling error” but on the expense of computation time. The other source of numeri-
cal errors come form the consequently treatment of dynamic events. When MMC method 
takes account of particle coagulation, the transform-weight of two “new” fictitious parti-
cles is halved and the volume of two “new” fictitious particles is changed as the sum of 
the two “old” fictitious particles, respectively. Those measures don’t accord perfectly 
with the reality of coagulation event; however maintain both computation domain and the 
number of fictitious particles. We might as well call the error as “constant volume and 
number error”. The repetitious MC loops and the averaging operation will restrain greatly 
the propagation and delivery of numerical error. As far as deposition event is considered, 
the disturbance of transform-weight of fictitious particles due to the forcible maintenance 
of constant volume and constant number contributes to “constant volume and number 
error”. The third numerical error originates from random process. MMC method adopts 
many random numbers and random processes, for example, when judging the occurrence 
of coagulation event and deposition event. Those random procedures exhibit some inevi-
table error, which is called as random error. Lastly, the statistical error is inevitably 
demonstrated by all MC methods. The statistical error is inverse proportional to the 
square root of the sample size. If the number of simulation particles reaches the magni-
tude of O(103) or more, statistical error shows a weak effect on numerical results of the 
macro-variables or the whole variables such as the total number concentration, geometric 
mean volume and the total volume concentration; however the total number of simulation 
particles plays an important role in the instantaneous variables or the detailed variables 
such as PSD at the appointed time-point when polydisperse population with a wide range. 
In fact, only when the number of simulation particles in every particle class reaches to 
the magnitude of O(102)－O(103) does MC method protect well against the statistical 
fatigue of properties of PSD. To increase the total number of simulation particles will 
decrease the statistical error. 

Case 1 is illustrated the relative error of MMC method for simultaneous coagulation 
and deposition. The radio of initial number concentration and real-time number concen-
tration during evolution, N0/N (t), is chosen as the reference variable. The relative error of 
N0/N (t) is computed via the relation: 

 
( ) ( )

( )
( )
( )
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1 .
N N t N N t N t

N N t N t
δ

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦
= =

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
−  (16) 

As for direct simulation Monte Carlo promoted by Liffman (noted by Liffman’s 
DSMC), Liffman[9] analyzed the relative error of N0/N (t), which satisfies approxima-

tively the condition ( )c2 N tδ < ,  where Nc(t) is the real-time total number concentra-

tion of simulation particles in “subsystem”. Because Liffman’s DSMC adopts the proce-
dure of stepwise “doubling” subsystem, Nc(t) always varies the value between Nc0/2 and 
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Nc0, where Nc0 is the initial number of simulation particles. So the upper limitation of δ 
satisfies the relation: c02 2 Nδ < . With respect to constant number method, Smith et 

al.[15] formulated an analysis of the relative error and scaled approximatively the quantity 

as the relation: ( ){ }0.8
0ln 2 ,N N t Nδ = ⎡ ⎤⎣ ⎦ c  where Nc is a constant in the constant 

number method. Fig. 6 shows the relative error of MMC method with the time evolution. 
Obviously, the simulation result of MMC method, the scattering of which is basically 
within 1.5%, shows the higher precision than that of Liffman’s DSMC on the whole. The 
computation precision of MMC method shows the same magnitude with that of constant 
number method. Similar with the fitting of constant number method, the relative error of 
MMC method is represented approximatively by the relation:  

δ = ( ){ }0.8
0 cln 2 .N N t N⎡ ⎤⎣ ⎦  

Generally speaking, the computation precision of MMC method will be worse and 
worse along with the advancement of dynamic evolution in dispersed systems. When the 
relative error of MMC method is greaten than 10%, it’s considered that MMC method 
doesn’t describe accurately the dynamic evolution in dispersed systems any longer. So 
the criterion of convergence or termination in MMC method is as follows:  

( ){ }0.8
0 cln 2 10%.N N t Nδ = <⎡ ⎤⎣ ⎦  

 

 
 

Fig. 6.  The relative error of N0/N(t). 
 

3.2  The expansibility of MMC method for GDE 

Those complicated mechanisms of coagulation and deposition progress are encapsu-
lated in the coagulation kernel and the deposition kernel by virtue of general dynamic 
equation. As for any system where particle coagulation, deposition, breakage, nucleation, 
condensation/evaporation, and chemical reaction occur, GDE describes the time and 
space evolution of PSD. GDE has very solid physical foundation and very simple physi-
cal assumption, which is able to describe nanoparticle material or galaxies, aerosol or 
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particulate matter (PM), and so on. Once GDE is well solved numerically by MMC 
method, ones can focus one’s mind on the complicated “kernel” model in various do-
mains and conditions. GDE itself, as given in the paper, is the Eulerian style, however, 
MMC method is Langrangian approach. It should be noted that GDE and MMC method 
is integrated perfectly into one framework because they have the same physical founda-
tion and physical assumption. Furthermore, In comparison with those Eulerian methods 
such as moments of method, sectional method, discrete method, or discrete-sectional 
method, MMC method has the wider scope of application and stronger expansibility 
since it obtains the information about trajectory crossing and history effect of particles. 

Nowadays any numerical methods for GDE focus on the solution of GDE describing 
the time evolution of PSD, which factually describes the spatially zero-dimension system. 
The computational ability of MMC method described in the paper is also zero-dimension. 
The information about the time evolution of PSD is sufficient for some application in 
engineering and science. However, the information about the space evolution of PSD is 
very important and necessary for some cases. For example, when researching the princi-
ple of the particulate matter enrichment with heavy metals by coagulation, condensation 
and nucleation progress in pulverized-coal flames[16], the spatial information about PSD 
will help to design the reasonable capturing strategy and control measures. However, it is 
difficult for all of numerical methods for GDE to describe the space evolution of PSD. 
It’s more disappointed that those MC methods don’t even have the expansibility consid-
ering space diffusion of PSD because of the introduction of subsystem. On the contrary, 
MMC method, which introduces the concept of weighted fictitious particle, not only has 
low computation cost and stable computation precision, but also has stronger expansi-
bility to simulate the time and space evolution of PSD within the whole system if the 
concept of subsystem is abandoned at some cases. MMC method for space diffusion will 
be developed in the next stage. 

The strong expansibility of MMC method also includes the conveniently consideration 
of other dynamic events such as condensation/evaporation, nucleation and breakage etc. 
Even MMC method has ability to couple with the numerical solution for the model of 
two-phase turbulent flow, which will describe not only the time and space evolution of 
PSD but also the fields of particle phase and flow phase etc. MMC method can also be 
applied to consider GDE for multi-component, more-dimensional and polydisperse 
population. Those works will also be developed in the next stage. 

4  Conclusion 

Multi-Monte Carlo (MMC) method for general dynamic equation (GDE) introduces 
the concept of weighted fictitious particle and is based on the “time-driven” technique. 
MMC method maintains forcibly the total number of fictitious particles and computa-
tional domain by means of the adjustment of the transform-weight and volume of the 
involved fictitious particles. Similar with constant-volume method, MMC method adapts 
well to engineering application and general scientific quantitative analysis; similar with 
constant-number method, MMC method maintains high and stable statistical precision. 
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The introduction of weighted fictitious particle makes it possible to abandon the concept 
of “subsystem”, where MMC method has stronger expansibility to consider the space 
evolution of PSD, boundary conditions and gas-particle dynamics. 

The computation precision of MMC method is constrained by the “uncoupling  
error”, the “constant volume and number error”, the random error and the statistical  
error. The relative error of MMC method is approximatively formulated as δ = 

( ){ }0.8
0ln 2 ,N N t N⎡ ⎤⎣ ⎦ c  which shows that MMC method has similar precision with 

constant number method but higher precision than Liffman’s DSMC. 
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