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ABSTRACT: Lattice Boltzmann (LB)-Lattice gas automata
(LGA) method for gas-solid two-phase flows is capable of
describing the motion of fluid and dispersed particles within
the same regular lattices. The LB-LGA method is with
advantages of being able to capture the fluctuation
characteristics of dispersed particles, facilitating the processing
of complex and dynamic boundary condition. However, the
available LB two-phase models just describe the behavior of
particles on the qualitative level. The velocity and displacement
of particles under drag force and Brownian force were solved
explicitly, and the motion probability of a particle to
neighboring nodes was accurately modeled, in such a way that
the LB two-phase model is capable of simulating two-phase
fields on the quantitative level. The resultant LB two-phase
model was used to simulate particle capture process by clean
fibers by various dominated mechanism (Brownian diffusion,
interception and inertial collision). In addition, the relationship
between pressure drop of system and volume of fiber, particle
trajectory and capture efficiency by various dominated
mechanism were also investigated. It is found that the
simulation results agree well with these of available theories or
empirical models. It is believed that the LB two-phase model
can provide evidence for understanding internal feature of
particle capture process and developing more reasonable
capture model.
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Fiber filtration, with the advantage of high
collection efficiency of submicron particles, is widely
used in coal-fired power plants, mining engineering and
cement industries. The filtration process of suspended
particles from the airflow is very complicated because of
the involved various deposition mechanisms (diffusion,
interception, inertial collision, etc) of solid particles.
Therefore, numerical simulation is an effective research
method for filtration process.

Solutions of the gas flow and potential fields are
first computed using the classical LB method, where the
nine-speed square Lattice in a two-dimensional domain
(denoted D2QQ9) is used. Within each time-step, the solid
particle located in one Lattice node may keep still or
jump to a nearest-neighbour node i with the probability
pi proportional to the projection of its displacement AX
on the Lattice direction i (see Fig. 1):

p; = max{0,Ax/ (g; -dx)},i=1,3,5,7 )
Xptes-dx Xptez-dX
P3 A-----mmmm A
x|
Xp >
p1 Xpter-dx

Fig. 1 Motion rule of particles in LGA
where dx is the Lattice length, e; is the velocity of fluid
particles. The solid particle is moved under the combined
action of fluid convection and Brownian diffusion, and
AX is then explicitly calculated.

The pressure drop of the system and the capture
efficiency of submicron particles are two significant
characteristics of fibrous filters. The former (often
measured by dimensionless drag force on fibers) mainly
depends on the volume fraction of fibers. Meanwhile, the
later is determined by various deposition mechanisms
(diffusion, interception, inertial collision). Fig.2 shows
the relationship between dimensionless drag force and
volume fraction of fibers. Fig. 3 presents the capture
efficiency by various mechanisms. Our simulation
results agree well with the existing formulas.
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