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Abstract

Particle size distribution is described by general dynamic equation (GDE). A new multi-Monte Carlo (MMC) method is promoted to solve

GDE for simultaneous particle coagulation and breakage. MMC method is based on ‘‘time-driven’’ Monte Carlo technique and conserves

constant number of fictitious particles and constant volume of computational domain with the evolution of time. Firstly, MMC method is

described in details, which includes the scheme of simultaneous coagulation and breakage, the introduction of ‘‘weighted fictitious particle’’,

the setting of time step, the judgment of the occurrence of coagulation and breakage event, the choice of fictitious coagulation partner, and

dealing with the consequence of particle coagulation and breakage event. Then MMC method is used to simulate four kinds of special cases

in which complete or partial analytical solutions exist; the simulation results of MMC method for GDE agree with analytical solutions well,

which proves that MMC method has high and stable statistical precision.

D 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Coagulation and breakage take effect in many nature

fields and engineering courses, including formation and

evolvement of air aerosols and emulsion droplets, and

manufacture of nanoparticle agglomerates, etc. For example,

coagulation and breakage of pulverized coal fly ash during

combustion are main mechanisms of the formation of

particulate matter (PM) [1,2]; coagulation and breakage

occur simultaneously for long chain polymer in chemical

engineering and fine droplets in spray flow or spray

combustion, leading to an equilibrium distribution. Because

many important properties of particles (for example, light

scattering, electrostatic charging, toxicity, radioactivity,

sediment and capturing strategy, etc.) depend on their size

distribution, the time evolution of size distribution is of

fundamental interest and key issue [3].
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Particle size distribution (PSD) along with time is

described by general dynamic equation (GDE), which can

take account of physical and chemical processes such as

coagulation, condensation/evaporation, nucleation, break-

age and deposition, etc. GDE for simultaneous particle

coagulation and breakage is as follows [4]:
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where np(v, t) is particle size distribution function at time t,

says, np(v, t)dv is the number of particles whose size range
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between v and v+dv per volume unit at time t; the dimension

of np(v, t) is particles m
�3 m�3, where ‘‘particles’’ denotes

the number of particles; b(v,u) is coagulation kernel for two

particles of volume v and u, m3 particles�1 s�1. S(v) is

breakage rate for particle of volume v, with dimension s�1;

c(u,v) is the probability of making a daughter of volume v

from a parent of volume u, b(u) is the number of particles

resulting from the breakage of a particle of volume u.

c(u,v)b(u) describes size distribution of particle of volume u

resulting from the breakup of a particle of volume v. The term

on the left-hand of Eq. (1) describes the change in number

concentration of particle of volume v with time; the two terms

on the right-hand describe the gain and loss in number

concentration respectively due to breakage and coagulation.

The first part in the ‘‘breakage’’ term on the right-hand of Eq.

(1) describes the breakage of particle of volume u bigger than

particle of volume v to yield particle of volume v, and the

second part represents the breakage of particle of volume v

with a statistical probability of S(v). The first part in the

‘‘coagulation’’ term accounts for the formation of particle of

volume v, and the second part shows the disappearance of

particle of volume v due to coagulation with any particle.

Particle size distribution is usually polydisperse and

spans widely, for example, pulverized coal fly ash particle

formation is accurately described as a tri-modal PSD that

includes a submicron fume region centered at approximately

0.08 Am diameter, a fine fragmentation region centered at

approximately 2.0 Am diameter, and a bulk or supermicron

fragmentation region for particles of approximately 5 Am
diameter and greater [1]; and then, GDE is a typical partially

integro-differential equation; In addition, some kinds of

mechanisms such as coagulation and breakage impose

different, complicated and nonlinear effects on PSD. The

above factors result in numerical predicament where normal

numerical methods (such as finite element method and finite

difference method, etc.) can hardly take account of GDE.

Nowadays the most popular numerical methods for GDE are

moments of method [5], Monte Carlo method [6–13],

sectional method [14], discrete method [15] and discrete–

sectional method [16], etc. Those methods have both

advantage and disadvantage.

The merit of moments of method is little computation

time and simple mathematical representations, however the

model need assume initial special-shaped particle size

distribution, or monodisperse, or self-preserving, or the

employed Taylor expansion; in addition there is no

information about the history of each particle which collides

to form a bigger particle.

Sectional method approximates the continuous PSD by a

finite number of sections within which the PSD function is

assumed to be constant. The model has receivable compu-

tation cost and computation precision by the selection of the

proper number of sections employed and the numerically

conserved integral property of the PSD. However, sectional

representation results in complex algorithms, and has bad

numerical accuracy on the lower end of PSD. Furthermore it
is troublesome for the method to handle multi-component,

more-dimensional, chemical reaction and coating, etc.

Discrete method solves the detailed general dynamic

equation and therefore most accurately describe the time

evolution of PSD. Discrete model can be used for validation

of other approximate GDE algorithm or for investigation of

the attainment of asymptotic self-preserving PSD. However

the model requires tremendous amounts of CPU time and

computer memory, which constraints mostly its engineering

application.

Discrete–sectional method is a combination of discrete

method and sectional method. The method utilizes discrete

method with finite number of bins to describe the lower end

of PSD (discrete size region) and sectional method with

proper number of sections to account for the other part of

PSD (sectional size regime). The method makes full use of

some advantages of discrete method and sectional method,

at the same time overcomes properly some disadvantages of

two parent methods. So discrete–sectional method has

satisfying accuracy and speed. However the combination of

discrete method and sectional method results in more

complicated mathematical representations and more com-

putation cost than sectional method.

As far as Monte Carlo (MC) method is considered, it can

gain information about history, trajectory crossing and

internal structure of particles; the Monte Carlo algorithms

for solving polydisperse and multi-component GDE are

easily programmed even considering restructuring, coating,

chemical reaction and fractal aggregation [13]. The dis-

advantage of Monte Carlo method is time-consuming

comparatively, and there is contradiction between compu-

tation cost and computation precision when normal MC

method is used to consider coagulation and breakage, which

will be explained in the following text. Along with more and

more strong computer power, simulation with some 104 to

107 particles is possible on fast PCs, which relieves greatly

the contradiction of expensive computation. In a word,

Monte Carlo method is an attractive way of solving GDE

because its discrete nature adapts itself naturally to the being

modeled mechanisms coagulation and breakage, which

involve discrete events.

Many researchers have investigated Monte Carlo method

for solving GDE. Summing up, MC method can be divided

into two classes according to the approach of time-step

setting: one is referred to as ‘‘time-driven’’ Monte Carlo

[17], which takes account of any possible event within an

adjustable time-step. Here time-step must be less than or

equal to the minimum time within which every possible

event takes place once at most for every simulation particle.

‘‘Time-driven’’ MC need divide explicitly time window into

intervals, and it’s possible for one simulation particle that no

any event is examined within one interval, which will cost

significant amounts of simulation time; the other is called

‘‘event-driven’’ Monte Carlo [18]. In general special events

are implemented stochastically with probabilities derived

from mean-field rates of corresponding process. In simu-
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lation of event-driven MC, a single event is selected to

occur, and time is advanced by an appropriate increment. In

contrast to time-driven MC, this MC doesn’t need explicit

time discretization and its time step, which is calculated

during simulation, adjusts itself to rates of various event

processes. However, one approach of ‘‘event-driven’’ MC,

inverse method [18], need compute total coagulation rate

with a double circle over N(N�1) /2 pairs or total breakage

rate with a single circle over N pairs (where N is the number

of simulation particles) after each coagulation or breakage

event, which is time-consuming if N is large. As for the

other approach of ‘‘event-driven’’ MC, acceptance–rejec-

tion method [18], if the range of PSD spans widely, the ratio

of the randomly generated coagulation kernel (or the

randomly generated breakage kernel) and the maximum

coagulation kernel (or the maximum breakage kernel)

becomes very small, which will slow down program

considerably because of the large number of rejections.

Furthermore acceptance–rejection method is an approxi-

mate solution, which has a rather large error when long time

evolution [13].

On the other hand, MC method can also be classified into

two general classes according to whether or not the total

number of simulation particles and simulation domain are

changed during MC simulation. The first approach is to

track a constant volume and thus grow or shrink the total

number of simulation particles in direct proportion to

number concentration of physical system, while conserving

mass. This method is sometimes referred to as ‘‘constant-

volume MC’’, which can’t maintain constant statistical

accuracy because the total number of simulation particles

continues to fluctuate. When coagulation is considered, the

total number of real particles continues to decrease, so does

the total number of simulation particles in constant-volume

MC. At the time the initial number of simulation particles

must be set to be enough large in order to satisfy proper

computation precision, which will burden computation cost

more badly. On the contrary, the total number of simulation

particles will continue to increase when particle breaks up,

which will also aggravate computation time. So there is the

contradiction between computation cost and computation

precision in constant-volume MC. The second class is

‘‘constant-number MC’’ promoted by Matsoukas and

colleagues [10–12], in which simulation volume is con-

tinuously adjusted so as to contain constant number of

simulation particles. The constant-number method maintains

constant statistical accuracy and can simulate growth over

arbitrarily long times with a finite number of simulation

particles. Nevertheless, contraction or expansion of simu-

lation volume results in bad applicability in engineering

computation and general scientific quantitative analysis.

Other similar constant-number methods, direct simulation

algorithm [19–21] or mass flow algorithm [22–24], have

been examined and reviewed by Ref. [25].

As for simultaneous particle coagulation and breakage,

the occurrence of coagulation event decreases the total
number of real particles; on the contrary, the occurrence of

breakage event increases the total number of real particles.

The competition between coagulation and breakage makes

the total number of real particles fluctuate sharply, which

embarrasses greatly the implement and maneuverability of

Monte Carlo method. We have developed a new multi-

Monte Carlo (MMC) method for coagulation [26] and

simultaneous coagulation and condensation/evaporation

[27]. MMC method has characteristics of time-driven,

constant-number and constant-volume MC technique. Those

technique are integrated a whole, which is named as multi-

Monte Carlo (MMC) method. The paper tries to perform

MMC method to consider GDE for simultaneous coagu-

lation and breakage. Firstly the scheme and framework of

MMC method for simultaneous coagulation and breakage

are described in details. Then some numerical simulations of

special cases are made using MMC method for GDE, and

the comparison of simulation results with corresponding

analytical solutions is taken.
2. Description for multi-Monte Carlo method

2.1. Designing the scheme of multi-Monte Carlo method for

simultaneous coagulation and breakage

The new MC method is designed as ‘‘time-driven’’ MC

technique, says, every simulate particle is tracked, and both

possible binary coagulation event and possible breakage

event are considered within time step Dt. The method

introduces the concept of ‘‘weighted fictitious particle’’,

which will be described in detail in Section 2.2. Although

the total number of real particles fluctuates continuously

along with the occurrence of coagulation event and break-

age event, the total number fictitious particles keeps

constant by means of the adjustment of the weight of those

related fictitious particles. In addition, the volume of

computational domain is conserved. Those technical details

will be shown in Sections 2.4 and 2.5. In MMC method,

particle coagulation event and breakage event can be

decoupled within a sufficiently small time step Dt, that is,

the evolution is decomposed into two distinct processes:

coagulation event and breakage event. The scheme of MMC

method for simultaneous coagulation and breakage is shown

in Fig. 1.

Within one time step, the dynamic events of one

particle are uncoupled with each other, that is, the particle

may coagulate, or break up, or both coagulate and break

up, or neither coagulation nor break up. Coagulation event

is independent of breakage event in the same circle over

all fictitious particles. It was also noticeable that the

dynamic evolution of one particle is uncoupled with that of

other particles, that is, every particle has probability of the

occurrence of dynamic events. So in MMC method, within

one time step there may be many coagulation events and

many breakage events. Of course null event is possible if
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Fig. 1. The scheme of Multi-Monte Carlo method for simultaneous coagulation and breakage.
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the coagulation probability of particle or the breakage pro-

bability of particle is enough small.

It is noticeable that coagulation and breakage event do

not change immediately properties and behaviors of the

tracked fictitious particle and the interrelated fictitious

particles within current time step. The effects of coagulation

and breakage event will be taken in the next time step. So

dealing with the consequence of particle coagulation and

breakage event should be delayed until the end of current

time step, which can refer to Fig. 1.

The key points of MMC method include transforming

real particles into fictitious particles, setting time step real-

timely, judging whether or not coagulation and breakage

event occur, choosing fictitious coagulation partner, and

dealing with the consequence of particle coagulation and

breakage event, which are described in detail in the

following text.

2.2. Transforming real particles into fictitious particles

Because of the limit of computation capacity of PCs,

Monte Carlo code can only examine 104¨107 particles at a

time. However, a reasonably sized system of dispersed

system contains approximately 107 or even more particles.

So in known Monte Carlo methods [6–13,17–24] a

subsystem of the total system is considered either implicitly

or explicitly. ‘‘Subsystem’’ contains 103¨107 simulation

particles, as each simulation particle represents some real

particles, says, each simulation particle has a number-

weight. Ones assume the whole system is fully-stirred and

spatially isotropic, and the subsystem satisfies the con-

straint of periodic boundary conditions, i.e., as some

particles move out from one boundary of the subsystem,

some identical particles move in from the symmetrical

boundary of the subsystem. By those hypotheses the

behavior of the subsystem duplicates the system as a
whole. ‘‘Subsystem’’ hypothesis makes it difficult for those

Monte Carlo methods to simulate the whole system and to

consider space dispersion of particle size function, boun-

dary conditions and particle Lagrangian tracking, which is

important in coupling with two-phase Euler/Lagrange

model to investigate particle-flow interaction and particle

dynamics.

The number-weight in constant-volume MC is same for

all particles and constant during simulation. As far as

constant-number MC [10–12] is considered, in the cases

of breakage and nucleation that result in net generation of

real particles, the volume of ‘‘subsystem’’ is contracted in

order to maintain constant number of simulation particles;

with mechanisms such as coagulation and deposition

which make for net depletion of real particles, this

amounts to the expansion of the simulated ‘‘subsystem’’.

Factually the number-weight in constant-number MC is

same for all particles but varies synchronously and

unisonantly.

Different from the above approaches, MMC method

introduces the concept of ‘‘weighted fictitious particle’’ in

order to conserve the volume of computational domain and

the number of fictitious particles within computational

domain. One believes that those real particles that have

same or similar volume can be considered to have same

properties and hence same behaviors. Those real particles

can be represented by one or several weighted fictitious

particles, where fictitious particles are an indicator of those

real particles. If the weight of one fictitious particle is

‘‘kwt’’, the fictitious particle represents ‘‘kwt’’ real particles.

So the time evolution of fictitious particle duplicates that of

real particle.

Fig. 2 shows schematic representation of relation

between real particle and fictitious particle system. As

shown in Fig. 2, every class of real particle population is

represented by some fictitious particles, and the volume of
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Fig. 2. Schematic representation of relation between real particle and fictitious particle system.
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fictitious particles is just the volume of those represented

real particles.

Fig. 3 shows the pictorial representation of numerical

selection of transform-weight ‘‘kwt’’ of fictitious particle. Bin

discretization of real particle size distribution is taken firstly,

and then every class of real particle population is represented

by some fictitious particles. Those fictitious particles of the

same class have same value of transform-weight ‘‘kwt’’,

however different value for different class. Generally speak-

ing, MMCmethod still maintains high computation precision

even though the value of ‘‘kwt’’ reaches to the magnitude of

O(103)¨O(104). In fact, one fictitious particle can be seen as

one bin of real particle size distribution, and particles in a

given size range are represented by a bin that contains ‘‘kwt’’

real particles. Since Monte Carlo approach tracks discrete

particles instead of bin in normal description, the nomen-

clature of ‘‘fictitious particle’’ instead of ‘‘bin’’ is used. A

factual example is shown in Ref. [27].

During simulation, every fictitious particle is tracked.

According to different consequence of different events, the

transform-weight ‘‘kwt’’ and the volume of those related

fictitious particles are changed, instead both computational

domain and the number of fictitious particles are maintained

during the time evolution of system. In fact, only those
start

Assuming initially the total
number of fictitious particles Nf

Initially, kwt=N/Nf, if=0

Nfj=0?

The run of particle
class ending?

End

 As for particle class j, the total
number of real particles Nj,

particle volume vj

No

Nfj=1
Bin discretization of real particle
size distribution, the number of
particle classes C and the total

number of  real particles N

Nfj=integer[Nj/kwt]

kwti=Nj/Nfj    i=if+1,...,if+Nfj

No

if=if+Nfj

the total number of
fictitious particles Nf=if

Fig. 3. Numerical selection of transform-weight of fictitious particle.
fictitious particles which coagulate or break up vary their

‘‘kwt’’ and volume with time in MMC method, and those

changes depend on factual event, neither synchronously nor

unisonantly, which will be described in detail in Sections 2.4

and 2.5.

Since a smaller number of fictitious particles are evolved

circularly in MMCmethod (seen in Fig. 1), computation cost

will decrease accordingly, especially when the total number

of real particles is very large within computational domain.

Furthermore, the introduction of ‘‘weighted fictitious par-

ticle’’ makes it possible to discard the introduction of

‘‘subsystem’’. For example, if the total number of real

particles in the whole system is small or one fictitious particle

is permitted to represent more real particles at a cost of lower

computation precision, the total number of fictitious particles

could be within the scope of computer ability. Under the

circumstances MMC method can discard ‘‘subsystem’’

concept and then has expansibility to consider the space

evolution of PSD, boundary conditions and even gas-particle

dynamics by means of coupling with two-phase turbulent

model and plotting grid, etc. Of course, the total number of

fictitious particles is still a large magnitude for the total

system having a large number of real particles, when

‘‘subsystem’’ concept must be continued to use in MMC

method.

2.3. Setting time step

In time-driven MC, every possible event should be

considered within time step Dt . So the number of

coagulation event of every fictitious particle must be less

than or equal to one within Dt, and the number of breakage

event of every fictitious particle must also be less than or

equal to one within Dt.

Firstly we investigate the constraint of time step due to

the occurrence of coagulation event. Ones can consider

fictitious particle as one group of real particles. Thus the

number of coagulation events occurring among ith-group

(where those real particles are represented by fictitious

particle i, and number concentrations per unit volume is

kwti) and jth-group particles (fictitious particle j, number
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concentrations per unit volume kwtj) per unit time per unit

volume is given by

NCij ¼ bij � kwti � kwtj ð2Þ

where bij is coagulation kernel for particle i and j, which

represents the probability of a binary coagulation event per

unit time.

For like particles, the number of coagulation events per

unit time per unit volume is taken as [28]:

NCii ¼ bii � kwti � kwti � 1ð Þ=2: ð3Þ

If one assumes the total number of real particles is N and

fictitious particles Nf, then NCi, the total number of

coagulation events of fictitious particle i per unit time per

unit volume, is as follows:

NCi ¼ ~
Nf

j¼1; jm i
NCijþNCii ¼ ~

Nf

j¼1; jm i
bij� kwti � kwtj
� �

þbii�kwti�
kwti�1ð Þ

2
: ð4Þ

Since fictitious particle i represent kwti real particles, the

average number of coagulation events of each real particle

with any real particle per unit time is followed as:

nci ¼ NCi=kwti ¼ ~
Nf

j¼1; jm i
bij � kwtj
� �

þ bii

� kwti � 1ð Þ
2

: ð5Þ

Since fictitious particle i is an indicator of those

represented real particles, Ci, the total coagulation proba-

bility of fictitious particle i, is as follows:

Ci ¼ nci ¼ ~
Nf

j¼1;im j
bij � kwtj
� �

þ bii � kwti � 1ð Þ
2

: ð6Þ

Then, coagulation time scale of fictitious particle i,

within which only one coagulation event occurs, is as

follows:

ti;coag ¼
1

Ci

: ð7Þ

Likewise, breakage time scale of fictitious particle i,

within which only one breakage event occurs, is

ti;brk ¼
1

Si
; ð8Þ
Pi2 Pi3 PPi1

0

…
1

1

j

ik
k

P
−

=
∑Pi1

3

1
ik

k

P
=

∑
2

1
ik

k

P
=

∑

R1

Fig. 4. The schematic diagra
where Si is breakage rate of fictitious particle i, which

represents probability of breakage of fictitious particle i in

unit time.

In MMC method, time step Dt should be less than or

equal to the minimum coagulation time scale (min(ti,coag)),

and also be less than or equal to the minimum breakage

time(min(ti,brk)), that is:

DtVmin
1

maxi¼1;...;Nf
Cið Þ ;

1

maxi¼1;...;Nf
Sið Þ

� �
: ð9Þ

MC is a stochastic approach, computational precision of

which depends on the total number of simulation particles

and the number of MC loop. In order to increase the

number of Monte Carlo loop, time step is usually defined

as

Dt ¼ amin
1

maxi¼1;...;Nf
Cið Þ ;

1

maxi¼1;...;Nf
Sið Þ

� �
: ð10Þ

The multiplicative constant, a, has the value of 0.01 or

less. As coagulation kernel is unbounded, the smallest time

scale is unusually due to coagulation. So during numerical

simulation time step Dt is factually defined as

Dt ¼ a
maxi¼1;...;Nf

Cið Þ : ð11Þ

2.4. Treating particle coagulation event

Treating particle coagulation includes the judgment of

the occurrence of coagulation event, the choice of coagu-

lation partner, and dealing with the consequence of

coagulation event.

The Nanbu method [29] is used to judge the occurrence

of coagulation event and to choose coagulation partner. A

schematic diagram (Fig. 4) is used to give readers a

quantitative image of Nanbu method.

A random number R1 from a uniform distribution in the

interval [0,1] is generated. A coagulation event of the

tracked fictitious particle i is calculated when the random

number R1 becomes smaller than the coagulation probability

of i within Dt, i.e. if

R1VCi � Dt: ð12Þ

Once coagulation event occurs, the next issue is choosing

coagulation partner of the tracked fictitious particle i.
ij PiNf

1

…

Ci t
1

j

ik
k

P
=

∑
1

1

fN

ik
k

P
−

=
∑ ∆

m of Nanbu method.
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Firstly, the probability of particle i coagulating with any

other fictitious particles j is expressed as

Pij ¼ kwtj � bij � Dt: ð13Þ

And coagulation probability among the same fictitious

particle i is expressed as

Pii ¼ kwti � 1ð Þ=2½ 	 � bii � Dt ð14Þ

Obviously,

Ci � Dt ¼ ~
Nf

j¼1;im j
bij � kwti
� �

þ bii � kwti � 1ð Þ
2

" #
� Dt

¼ ~
Nf

k¼1

Pik : ð15Þ

Secondly the same random number R1 is used for the

determination of true coagulation partner. If the relation

~
j�1

k¼1

PikVR1V ~
j

k¼1

Pik ja 1;Nf½ 	: ð16Þ

is satisfied, it is decided that the tracked particle i coagulate

with fictitious particle j. If not, the second step is repeated

until the true coagulation partner is found out.

The direct result of particle coagulation is that two

smaller real particles disappear and instead one bigger real

particle produces. Along with the occurrence of particle

coagulation event, the total number of simulation particles

cuts down continuously in ordinary constant volume Monte

Carlo method. If the number of sample space decreases

continuously, computation precision of Monte Carlo method

will decrease accordingly. One of important points of MMC

method is to keep the total number of fictitious particles

constant.

Every fictitious particle represents some real particles.

When the tracked fictitious particle ‘‘A’’ coagulates, it

means some real particles represented by ‘‘A’’ (its number

concentration is kwtA, its volume is vA) coagulate. Like-

wise, when the tracked fictitious particle ‘‘B’’ coagulates, it

implies some real particles represented by ‘‘B’’ (its number

density is kwtB, its volume is vB) coagulate. Because the

‘‘A’’ is a signal of some real particles, ones can neglect the

factual progress of the coagulation event, that is, it is

insignificant to know which coagulate with their partner, or
The tracked fictitious
particle B,vB,kwtB

The coa
partner A

+

The coag
partner B

The tracked fictitious
particle A,vA,kwtA

+The first check of
coagulation event A-B:

The second check of
coagulation event A-B:

Fig. 5. Schematic diagram of the conseque
to differentiate whether or not the number of real particles

represented by ‘‘A’’ is equal to the number of real particles

represented by ‘‘B’’. Instead ones should focus on the direct

result of coagulation event. As a direct result of coagulation

event, those ‘‘old’’ real particles represented by A and B are

changed as bigger real particles, and the total number of

those bigger real particles is the half of the total number of

those ‘‘old’’ real particles.

In order to keep the total number of fictitious particles

constant, both the tracked fictitious particle and its partner

are conserved. Accordingly their transform-weight kwt and

their volume are adjusted to satisfy the law of conservation

of mass and the rule of change of number. It is considered

that the transform-weight of both the tracked fictitious

particle A and its partner B are halved, respectively, and the

volume of both A and B is changed as vA+vB. Because one

coagulation event of particle pairs is double-counted within

each time step Dt, only some properties of the tracked

fictitious particle are changed, where no any change is made

in its partner. The strategy of the consequential treatment of

coagulation event is shown in Fig. 5. It is noticeable that

transform-weight kwt is not always integer, although every

kwt in Fig. 5 is endowed with integer for the purpose of

convenient plotting. When the tracked fictitious particle is

‘‘A’’, the following measures are taken:

kwtAð Þnew ¼ kwtA=2; vAð Þnew ¼ vA þ vB: ð17Þ

When the tracked fictitious particle is assigned to ‘‘B’’ in

turn, its coagulation partner will be ‘‘A’’ theoretically and

the same measure is taken:

kwtBð Þnew ¼ kwtB=2; vBð Þnew ¼ vA þ vB: ð18Þ

The measures not only conserve the number of fictitious

particles but also accord with the reality of coagulation

event, no matter how many coagulation events there are and

how long the evolution time is.

2.5. Treating particle breakage event

Treating particle breakage includes the judgment of the

occurrence of breakage event and dealing with the

consequence of breakage event.

R2 is a random number from a uniform distribution in the

interval [0,1]. A breakage event of fictitious particle i occurs
gulation
,vA,kwtA

new B,(vB)new=vA+vB,(kwtB)new=kwtB/2
no any change in partner A

ulation
,vB,kwtB

new A,(vA)new=vA+vB,(kwtA)new=kwtA/2
no any change in partner B

ntial treatment of coagulation event.



Table 1

The list of computation conditions and corresponding computation cost

Condition Case C B sC (s) sB (s) N0 Nf v0 (or vg0)

(Am�3)

Evolution

time (s)

CPU

time (s)

1 Case 1 2�10�9 0.005 50 200 107 3000 1 5000 492

2 Case 1 10�8 0.005 10 200 107 3000 1 1000 240

3 Case 1 10�7 0.005 1 200 107 3000 1 100 110

4 Case 2 10�7 10 1 0.1 107 3000 1 4 570

5 Case 2 10�7 0.5 1 2 107 3000 1 80 630

6 Case 2 10�7 0.25 1 4 107 3000 1 160 628

7 Case 3 10�7 10 1 0.1 107 3000 1 4 572

8 Case 3 10�7 0.5 1 2 107 3000 1 80 616

9 Case 3 10�7 0.25 1 4 107 3000 1 160 629

10 Case 4 6.405�10�10 0.011 1561.28 3122.56 106 3000 0.029 1561.28 74
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when the random number R2 becomes smaller than the

breakage probability of i within Dt, i.e.,

R2VSi � Dt: ð19Þ

The fragment from breakage of fictitious particle i is

described by fragment size distribution. cij is probability of

making a fragment of index j from a parent of index i, bi
is total number of particles resulting from the breakage of

a particle of index i. The constraints on cij and bi is

[4,5,30]:

(i) ~jcij ¼ 1, which indicates that every fragment will be

considered.

(ii) bi
2, which shows that the total number of fragments

is greater than or equal to 2, even infinite.

(iii) ~jvjcijbi ¼ vi, which indicates the mass of parent

particle is equal to the total mass of fragments.

If fictitious particle A (index i, transform-weight

kwtA) has affirmed to break up, the first step is to get

the total number of fragments according to bi. And then
Fig. 6. Evolution of the particle ratio average
fragment size distribution is gained according to both cij
and bi. As far as one binary breakage event is

considered, ones assume two fragments are fictitious

particle B and C, respectively (corresponding index j and

k, transform-weight kwtB and kwtC, respectively). Based

on the law of conservation of mass and the rule of

number of fragments, two fragments can be described as

follows:

kwtA ¼ kwtB ¼ kwtC; vA ¼ vB þ vC: ð20Þ

When the size of one fragment j is decided according to

cij, the size of the other fragment k is decided according to

Eq. (20).

Attentively, the sum of fictitious particles will be added

one at least along with one breakage event unless measures

are adopted. One of important points of treating breakage

event is to keep the total number of fictitious particles

constant. Some measures are adopted as follows: the first

fragment is stored in the position of the parent particle i

and other fragments are merged, respectively, with one

fictitious particle that has same or similar size with the
size as a function of time for Case 1.
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fragment. As for a binary breakage, the law of mergence is

as follows:

vDð Þnew ¼ vD; kwtDð Þnew ¼ kwtD þ kwtC ð21Þ

where fictitious particle C is the other fragment. Fictitious

particle C is merged with fictitious particle D, which is

chosen randomly from fictitious particle array. Before

merging the volume of C and D is vC and vD (vD�vC),

and the transform-weight is kwtC and kwtD, respectively.

After merging, the volume and transform-weight of D are

(vD)new and (kwtD)new respectively and are updated.

Those measures will conserve the total number of

fictitious particles.
3. Algorithm validation

To validate MMC method for GDE considering simulta-

neous coagulation and breakage, four cases in which

complete or partial analytical solutions exist are chosen

and simulated numerically. All cases are binary coagulation

and binary breakage (bi =2). In Case 1¨3 initial particle size

distribution is monodisperse, initial number, N0, and initial

size, v0. In the paper, we choose v0=1 Am3, N0=10
7

particles/cm3 for Case 1¨3. In Case 4, initial particle size

distribution is polydisperse and is represented by an

exponential function:

np v; 0ð Þ ¼ N0

vg0
e
� v

vg0 ð22Þ

where vg0 is initial mean geometric size. In Case 4 we

choose N0=10
6 particles/cm3, vg0=0.029 Am3. In addition
Fig. 7. Particle size distributions at some tim
we choose the total number of fictitious particles Nf =3000

when simulating Case 1¨4.

3.1. Case 1

This is a discrete model in which primary particles (or

monomers) coagulate to form larger clusters, which in turn

break into pieces containing a discrete number of primaries.

Coagulation kernel b is constant number C, which is

independent of particle size. The characteristic coagulation

time is defined as sC=1 / (CN0). Only those particles which

size is greater than that of the primary particle could break

up and the smallest fragment size is v0. Breakage rate S is

proportional to the number of primary particles in the

cluster, that is, S =B( pn�1), where B is constant number

and pn =v /v0 is the number of primary particles in the

cluster of volume v. As for primary particles, pn =1, S =0.

The characteristic breakage time is defined as sB=1 /B.
Numerical values of kernels and time scales are gathered in

Table 1. The distribution of fragments is uniform, i.e.,

fragments of any size appear with equal probability. The

probability cij, that a parent particle containing i primary

particles will generate a daughter particle containing j

primary particles is [10]:

cij ¼
1= pni � 1ð Þ pni > 1 and 1VpnjVpni � 1

0 otherwise
:

�
ð23Þ

Assuming R3 is a random number uniformly distributed

between 0 and 1, the size of fragment j is calculated as

follows [10]:

vj ¼ v0 integer R3 pni � 1ð Þ½ 	 þ 1f g ð24Þ

where integer [] indicates the integer part of its argument.

The size of the other fragment is vk =vi�vj.
e-point with sB /sC=200 for Case 1.
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The ratio of the average steady-state size to initial

average size (called ratio average size) is obtained [10]

vm;V ¼ Vm;V

Vm;0
¼ N0

NV

¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2sB=sC

p
2

: ð25Þ

The time evolution of the ratio average size is [4]:

vm tð Þ ¼ Vm tð Þ
Vm;0

¼ N0

N tð Þ ¼ 1þ
2Vm;V vm;V � 1

� �
1þ 2vm;V � 1

� �
cth

t

sB
vm;V �1=2
� �
 � :

ð26Þ

where cth() indicates hyperbolic cotangent function.
Fig. 8. Evolution of the particle ratio average size as
Analytical solution of particle size distribution ni is as

follows [10]:

ni tð Þ ¼
Ni

N tð Þ ¼ 1

vm tð Þ � 1
1� 1

vm tð Þ

� 
pni

ð27Þ

ni(t) represents the radio of the number of particles

containing i primary particles to the total number of all

particles at time t. It is apparent that ~ini ¼ ~iNi=N tð Þ ¼ 1.

In addition, the normalized size distribution is n(v)=ni(t) /v.

The ratio average size as a function of time is shown in

Fig. 6. Since primary particles do not break up, the average

size will only increase in the discrete cases. Along with the

evolution of time the average size increases and the total
a function of time for (a) Case 2; (b) Case 3.
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number of real particles decreases, which indicates coagu-

lation ‘‘defeats’’ breakage. However the average size and the

total number of real particles will get to a steady-state

condition further, which indicates coagulation equalizes

breakage. By setting various ratio of coagulation kernel

constant C to breakage rate constant B, the steady-state ratio

average size can be adjusted arbitrarily, but at least greater

than 1. The simulation result of MMC method for GDE

agrees with analytical solution on the whole.

Fig. 7 illustrates particle size distribution at various times

with sB /sC=200 for Case 1. The simulation results make

clear that the exponential form of PSD is approached even

as early as t=3sC and is hold until steady state (such as

t =100sC). On the lower end and upper end of particle size
Fig. 9. Particle size distributions at some time-poin
distribution, the agreement between MMC solution and

analytical solution is bad, although it is still good

qualitatively. It is noticeable that the initial number of real

particles is 107 while the total number of fictitious particles

is only 3000, i.e., one fictitious particle represents about

3333 real particles. If increasing the number of fictitious

particles, one can foresee higher computation precision,

however at the cost of increasing computation cost. The

other possible reason of numerical bias may originate from a

discrete binning method that is used to get size distribution.

Size distribution is divided into bins by certain kinds of law

between the smallest and largest size, and the number of

particles in each bin is counted and converted into PSD.

Furthermore the floating-point operational precision of
t with sB /2sC=1 for (a) Case 2; (b) Case 3.
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computer may contribute partly to the numerical bias on the

upper end of PSD, in which the values of distribution ni
reach to the magnitude of 10�8. Because the number of

those particles on the upper end of PSD is small, the

numerical result of MMC method is still satisfying.

3.2. Case 2 and Case 3

The two cases are continuous model. Coagulation

kernel b is still constant number C, and breakage rate S

is constant number B independent of size. Comparing with

Case 1, every particle including primary particle has

possibility of breakage. The difference of the two cases

lies in: the fragment distribution in Case 2 is uniform and

in Case 3 equal-size. If R4 is a random number uniformly

distributed between 0 and 1, the size of one fragment for

Case 2 is vj =R4vi and the size of other fragment is

vk=(1�R4)vi; the size of two fragment for Case 3 is

vj=vk =0.5vi.

Analytical solution of steady-state ratio average size for

both Case 2 and Case 3 is given by Lee and Matsoukas [10]:

vm;V ¼ Vm;V

Vm;0
¼ N0

NV

¼ sB
2sC

: ð28Þ

And the time evolution of the ratio average size is as

follows [10]:

vmðtÞ ¼
Vm tð Þ
Vm;0

¼ N0

N tð Þ ¼ 1þ 1� vm;V
� �

exp � t

sB

� 

:

ð29Þ
Fig. 8 shows the time evolution of the ratio average size

for Case 2 and Case 3. Since the size of fragment is

continuously distributed, the average size can increase or

decrease according to the various ratio sB /sC or B /C.
Fig. 10. Normalized particle size distribution for Cas
Along with time evolution, the average size and the total

number get to steady state, which indicates coagulation and

breakage is in the state of equilibrium. The simulation

results of MMC method for GDE agree with analytical

solutions well.

Fig. 9 shows particle size distribution at various times

with sB /sC=1 for Case 2 and Case 3. The particle size

distribution remains basically the exponential distribution

from a short evolution time (t =3sB) to a long evolution

time (t =40sB), which is ‘‘self-preserving’’ curve [31].

When particle size is small (V /Vmb1 in Fig. 9), the

plotted distribution scattered seriously. In the same way,

the source of numerical deviations is the limited

number of fictitious particles, the discrete binning

method and the floating-point operational precision of

computer. Here the number of bins is 200, logarithmi-

cally spaced.

Fig. 10 shows steady-state normalized size distribution

with sB /2sC=1 for Case 2 and Case 3. The average size

remains constant through the simulation, so does the

particle number. The size distribution is independent of

time. The results in Fig. 10 come from those at time

t =40sB. For V /Vmb1, Diemer [32] and Diemer and

Olson [33] have obtained asymptotic expressions of the

steady-state normalized size distribution, which is drawn as

two lines with slope �2 /3 for Case 2 and slope �0.415

for Case 3. MMC solution agrees with asymptotic

expressions qualitatively.

Fig. 11 shows the collapse speed rate of the average size.

The numerical result can be compared with analytical

solution of Eq. (29). The agreement is good on the whole,

however it becomes worse along with the time evolution.

The source of numerical bias is the same with the above

analysis.
e 2 and Case 3 with steady-state (sB /2sC=1).



Fig. 11. Collapse rate of the particle average size for Case 2 and Case 3 with sB /2sC=0.05.
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3.3. Case 4

In fact Case 4 is the Baltz–Tobolsky problem (Case 1) in

continuous spectrum form, which is solved by Patil and

Andrews [34] using the Laplace transform on the particle

size variable. Case 4 is analogous to simultaneous coagu-

lation and breakage with constant coagulation kernel, first-

order breakage rate and binary uniform fragment size

distribution. Here c(u , v ) = 1 / v, b (u ) = 2, S (u ) =Bu ,

b(v,u)=C corresponding to Eq. (1). It can be proved that

the total number of particles is constant by choosing the

values of the problem parameters to satisfy B =2vg0 /C [34].

In the condition particle size distribution conserves steady
Fig. 12. Particle size distributions a
state at any time, so the initial PSD, Eq. (22), is also the

equilibrium solution.

Fig. 12 shows particle size distribution at various times

for Case 4. The exponential form particle size distribution

is conserved basically at those time points. Fig. 13 shows

the total number of particles with the evolution of time.

Here the number of discrete bins is 200, logarithmically

spaced.

Computation costs for various conditions of those cases

are listed in Table 1. Hardware and software environment

are as follows: Athlon Xp2500+, 512M, Visual Fortran 6.0,

Windows Xp professional. There are only several hundreds

seconds for any computational condition. Thus the low
t some time-point for Case 4.



Fig. 13. The total number of particles with the evolution of time.
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computation cost of MMC method will encourage its

engineering computation.
4. Conclusion

Multi-Monte Carlo (MMC) method solving general

dynamic equation (GDE) for simultaneous coagulation and

breakage is performed in the paper. The paper has described

in detail the MMC method. Its characteristics are as follows:

the introduction of the concept of weighted fictitious

particles, constant number of fictitious particles, and constant

computational domain. MMC method is the combination of

‘‘time-driven’’ MC, constant number method and constant

volume method. The other remarkable advantage of MMC

method is its good expansibility. Since MMCmethod has the

possibility of discarding the concept of ‘‘subsystem’’, MMC

method has possibility to account for space dispersion of

particle size function, boundary conditions and particle

Lagrangian tracking, etc, although the paper does not realize

numerically the possibility, which will be developed in the

next stage.

MMC method has been used to simulation four special

cases. The agreement between MMC solution and analytical

solution is mostly good, which validated high and stable

computation precision of MMC method. Furthermore com-

putation cost of MMC method is low enough to apply

engineering computation and general scientific quantitative

analysis.

Notations

b(u), bi The number of fragments resulting from the

breakage of a particle of volume u (index i)

B Constant number

Ci Coagulation probability of fictitious particle i
C Constant number

kwt Transform-weight of fictitious particle

n The radio of the number of particles

np Particle size distribution density function, particles/

m3/m3

nc The average coagulation event of each real particle

per unit time

N The total number of particles

NC The number of coagulation events

Pij The probability of particle i coagulating with any

other fictitious particles j

pn The number of primary particles

R1, R2, R3, R4 Random number from a uniform distribution

in the interval [0,1]

S Constant breakage rate, s�1

S(v),Si The breakage rate for particle of volume v (index

i), s�1

t Time, s

u,v The volume of particle, m3

v Ratio average size

V Control volume, m3

V The volume of particle, m3

Greek letters

a Multiplicative constant

b Coagulation kernel, m3/particles/s

c(u,v), gij The probability of making a daughter of volume

v (index j) from a parent of volume u (index i)

s The characteristic time scale, s

Dt Time step, s

Subscripts

0 Refers to initial condition

V Refers to condition at tYV

A, B, C, D Refers to the index of fictitious particle
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coag, C Refers to coagulation

brk, B Refers to breakage

f Refers to fictitious particle

g Refers to geometric mean value

m Refers to mean value

i, j, k Refers to the index of fictitious particle

min Refers to minimum value

max Refers to maximum value

new Refers to the condition after coagulation event or

breakage event

p Refers to particle phase
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