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Population Balance-Monte Carlo Simulation
for Gas-to-Particle Synthesis of Nanoparticles

Xiaoming Hao, Haibo Zhao, Zuwei Xu, and Chuguang Zheng
State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology,
Wuhan, China

The process simulation of nanoparticle synthesis via the
gas-phase method is essential to understanding the detailed
dynamic evolution of nanoparticles within a very short time period
under high temperature. The task is, however, very challengeable
up to now as the conversion of the gaseous precursor to the end-use
nanoparticle is a complex physicochemical process involving
nucleation of the particulate phase, agglomeration between
particles and sintering under industrial production conditions. In
this article, we extended the differentially weighted Monte Carlo
method for population balance to simulate the dynamic evolution
of titania (TiO2) nanoparticles synthesized by gas-to-particle
conversion in a single aerosol reactor, considering simultaneous
nucleation, agglomeration, and sintering. The simulated size
distribution of TiO2 agglomerate and primary particles produced
by the thermal decomposition of titanium tetraisoproxide agreed
well with the experimental data. In the simulation, the fast
population balance-Monte Carlo method was utilized to accelerate
the process simulation on a desktop PC. Results were obtained
up to 178 times faster than that of a normal Monte Carlo method.
The inhomogeneous internal structure of primary particles was
considered through solving population balance of polydisperse
primary particles within agglomerate. It was found the polydis-
perse model could predict the primary particle size distribution
better. Simulation results revealed a complex competition relation
among nucleation, agglomeration and sintering.

[Supplementary materials are available for this article. Go to
the publisher’s online edition of Aerosol Science and Technology
to view the free supplementary files.]

Received 27 March 2013; accepted 21 June 2013.
The authors were supported by the National Natural Science Foun-

dation of China (51276077, 51021065), Program for New Century
Excellent Talents in University (NCET-10-0395), National Key Basic
Research and Development Program (2010CB227004), and State Key
Laboratory of Multiphase Complex Systems (MPCS-2011-D-02).

Address correspondence to Haibo Zhao, State Key Laboratory of
Coal Combustion, Huazhong University of Science and Technology,
Luoyu Road 1037, Wuhan 430074, China. E-mail: klinsmannzhb@
163.com

1. INTRODUCTION
Nanoparticles synthesis via aerosol route has recently at-

tracted the growing interests of the scientific and industrial com-
munities because it can produce high-purity nanoparticles with
specially tailored chemical and physical property, e.g., hybrid
component and high specific surface area (SSA), which can
be used to produce ceramics, catalysts, pigments, electric, and
optical materials (Seto et al. 1997). In the gas-to-particle synthe-
sis route (aerosol processes), particles are built from molecules
(by chemical reaction/nucleation) all the way up to the desired
size (by condensation, agglomeration, and sintering) (Pratsi-
nis and Vemury 1996; Bandyopadhyaya et al. 2004). Typically
in aerosol processes (Nakaso et al. 2001), highly concentrated
nanosized nuclei grown from gas monomers by nucleation and
surface reaction undergo rapid Brownian agglomeration. At a
high temperature, the resultant nanoparticles may fully coalesce
into dense spheres almost instantaneously, as the agglomeration
rate is far smaller than the sintering rate. As the aerosol reactor
cools down, the sintering rate may be far smaller than the ag-
glomeration rate, leading to fractal-like agglomerates consisting
of a large number of primary particles (PPs). Gas-phase nucle-
ation, agglomeration, sintering compete in synthesis processes,
and affect the size distributions of agglomerates and primary
particles. Simulating these phenomena involved helps us bet-
ter understand the detailed dynamic evolution of nanoparticles
within a very short time period (usually less than several sec-
onds) and having an inhomogeneous temperature history, and
therefore provides guidance to control property of product par-
ticles. Population balance modeling (PBM) is the most effective
tool for the process simulation of nanoparticle dynamics, where
size and surface area are two key internal variables of particles
that should be tracked during the dynamic evolution (Tsantilis
et al. 2002).

Deterministic methods for PBM (Hounslow et al. 1988; Kruis
et al. 1993; Xiong and Pratsinis 1993; Rosner and Pyykönen
2002; Muhlenweg et al. 2002; Fox 2006) are capable of de-
scribing the time (or axial-direction) evolution of nanoparticle
volume and surface area. These methods aim at the direct so-
lutions of the following bivariate population balance equation
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1126 X. HAO ET AL.

(PBE), which mathematically formulates the nanoparticle dy-
namics including nucleation, agglomeration, and sintering:

∂n (v, a, t)

∂t
= {

k (t) CpreNAδ (v0,v) δ (a0,a)
}

nucl

+

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

2

∫ v

v0

∫ a

a0

β(v′, v − v′; a′, a − a′; t)n(v′, a′, t)

× n(v − v′, a − a′, t)dv′da′ − n(v, a, t)
∫ ∞

v0

∫ ∞

a0× β(v′, v; a′, a; t)n(v′, a′, t)dv′da′

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

agg

−
{

∂

∂a

[
(a − afinal)

τs (v, a)
n (v, a, t)

]}
sin

, [1]

where n(v,a,t) is the number density function at time t such that
n(v,a,t)dvda represents the number concentration of particles
in the volume range v to v + dv and the surface area range a
to a+da; k(t) is the gas-phase reaction rate, Cpre is the mole
concentration of gas precursors, NA is the Avogadro’s number;
β(v′,v;a′,a;t) is the agglomeration rate coefficient (i.e., agglom-
eration kernel) between one particle of state (v′,a′) and another
particle of state (v,a); τ s(v,a) is the characteristic sintering time
of one particle of state (v,a), afinal is the surface area of the
sphere after complete coalescence.

Deterministic methods for PBM have been widely used to
gain dynamic evolution of agglomerate and primary particle size
distribution. However, the numerical solution of the bivariate
PBE poses a number of difficulties due to the double integral and
nonlinear behavior of the equation. More unfortunately, these
deterministic methods are at a disadvantage of modeling more
than two internal variables (e.g., the fractal structure, chemi-
cal component, charge). In fact, these functional properties of
nanoparticles cannot be characterized by commonly used vol-
ume and surface area. In contrast to deterministic integration of
the PBE, the population balance-Monte Carlo (PB-MC) method
directly simulates the dynamic evolution of a finite sample of
the particle population. The advantage of PB-MC methods lies
in their simplicity and, more importantly, in their stochastic and
discrete nature that adapt itself naturally to nucleation, agglom-
eration, and sintering (Rosner and Yu 2001; Morgan et al. 2005).
Furthermore, the discrete nature of the particles used to represent
the system is very useful for multivariate population balances,
i.e., containing other particle properties than particle size alone.

The PB-MC methods have been used by several groups to
research simultaneous agglomeration and sintering. Rosner and
Yu (2001) explored MC-based simulations for agglomeration
and sintering, integrated with finite-rate coalescence in the
asymptotic limit that characteristic sintering time is much
shorter compared with the characteristic agglomeration time.
Tandon and Rosner (1999) obtained the self-preserving joint
distribution function (with respect to both particle size and
surface area) of populations of coagulating fractal agglomerates
in the continuum regime, simultaneously undergoing finite-rate
restructuring. Kostoglou and Konstandopoulos (2001) studied

the evolutions of agglomerate size and fractal dimension during
Brownian agglomeration. These researchers usually prefer the
constant-number method (Smith and Matsoukas 1998) because
the PB-MC method is capable of maintaining a constant
number of simulation particles by the appropriate time-tracking
procedure. These PB-MC methods, which directly describe
the dynamic evolution of internal variables (e.g., size and
surface area) of each simulation particle (it represents a certain
number of real particles having similar state with the simulation
particle), belong to the variant of the direct simulation algorithm
or traditional direct simulation Monte Carlo method. In contrast
to direct simulation algorithm, the mass flow algorithm uses one
stochastic particle to represent mass concentration rather than
number concentration of real particles. Morgan et al. (2005)
proposed the mass flow algorithm for modeling agglomeration,
sintering, nucleation, and surface growth in preparation process
of SiO2 or TiO2 nanoparticles. Compared with traditional direct
simulation algorithm, the mass flow algorithm is more effective
and simple, however, at the cost of complicated algorithms
and less accuracy in number concentration (Goodson and Kraft
2004).

With respect to gas-to-particle synthesis of nanoparticles via
plug-flow aerosol reactors, some experimental measurements
and numerical results are available. Seto et al. (1995) stud-
ied the sintering characteristics of TiO2 agglomerates by test-
ing TiO2 agglomerates produced by thermal decomposition or
hydrolysis of titanium tetraisopropoxide (TTIP). They evalu-
ated several characteristic sintering time models, and found that
the simulation results are very sensitive to the sintering model.
Seto et al. (1997) further measured and simulated (using two-
dimensional sectional method) the change in size distributions
of agglomerates (like TiO2 and SiO2) and primary particles.
They found that the sintering of agglomerates occurs at temper-
atures corresponding to 50–100% of the bulk melting points of
the particle material. Nakaso et al. (2001) extended their exper-
imental measurements and population balance modeling to an
integral reactor where nucleation, agglomeration, and sintering
take place simultaneously. They modeled the growth of both ag-
glomerates and primary particles by two-dimensional discrete-
sectional method (DS), considering effect of temperature on the
size distribution of TiO2 nanoparticle product. Park and Ro-
gak (2003) used a one-dimensional model for agglomeration,
gradual sintering, condensational obliteration, and diffusional
wall deposition in the same aerosol reactor. In their model parti-
cles smaller than the “melting diameter” were assumed to sinter
instantly while bigger particles did not sinter at all. All these
models show significant discrepancy with experimental results,
which was attributed to the effect of diffusional wall deposition,
precursor reaction rate, condensation, and non-effective char-
acteristic sintering time model. Tsantilis and Pratsinis (2004)
found ranges of surface reaction rates lead to narrower size
distribution. Nakaso et al. (2003) studied the effect of chem-
ical reaction rate on the size and morphology, and obtained
an effective gas-phase reaction rate. Effective characteristic
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MONTE CARLO SIMULATION OF NANOPARTICLE PREPARATION 1127

sintering time equations of SiO2/TiO2 were proposed by several
groups (Tsantilis et al. 2001; Buesser et al. 2011; Shekar et al.
2012).

This article aims at the process simulation of gas-to-particle-
synthesis of nanoparticles using the direct simulation algorithm.
The PB-MC method will be very powerful for general simula-
tion of the processes, where more than two internal variables
are required to understand more details involved in the synthe-
sis processes. To our best knowledge, very limited literatures are
available on PB-MC methods for nanoparticle synthesis starting
from the gas phase directly (i.e., considering simultaneous nu-
cleation, agglomeration, and sintering). It is partly ascribed to
several drawbacks of popular PB-MC methods. The first draw-
back relates to the greater CPU time required as compared to
(discrete-) sectional models and methods of moments. For ex-
ample, the normal PB-MC costs nearly a week if no acceler-
ation action is adopted when the simulation particle number
is only 1000. The second drawback is the statistical noise in-
herent to MC methods. Sufficient simulation particles (usually,
more than 1000) and several repeated simulations with random
number using different seeds are required to fatigue against the
statistical noise. What’s more, the available PB-MC methods
usually track equally weighted simulation particles, which di-
rectly leads to an insufficient number of simulation particles in
those sections of the size spectrum where the density is low, such
as at the two edges of nanoparticle size distribution, and then a
great deal of statistical noise for particles in those regions. We
have recently proposed a differentially weighted Monte Carlo
(DWMC) method for particle coagulation in monvariate (Zhao
et al. 2009), multivariate (Zhao et al. 2010, 2011), or multi-
dimensioanl (Zhao and Zheng 2013) population balance. The
method constructs a new jump Markov process based on a new
coagulation rule for two differentially weighted simulation par-
ticles, and restricts simulation particle number in each size in-
terval within prescribed bounds during simulation. The DWMC
efficiently reduces statistical noise, and has the remarkable ad-
vantage of being able to track the size distribution over the full
size spectrum (Zhao et al. 2009). In this study, we extended the
DWMC method to a single reactor and described simultaneous
nucleation, agglomeration, and sintering involved in nanoparti-
cle dynamics in real processes.

2. MODELS
The present simulation is for synthesis process of nanopar-

ticles (TiO2) produced from thermal decomposition (Equation
(2)) of titanium tetraisoproxide (TTIP). The formation rate of
TiO2 nuclei is given by Equation (3) (Okuyama et al. 1990).

TTIP → TiO2 + 4C3H6 + 2H2O, [2][
∂N (v0, a0, t)

∂t

]
nucl

= kCpreNA with k = 3.96 × 105

× exp(−8.48 × 103/T ), s−1, [3]

where N(v0,a0,t) is the number concentration of TiO2 nuclei
(they are considered as spherical particles), Cpre represents the
mole concentration of precursor (mol/m3), k is the rate of thermal
decomposition (s−1), and NA is Avogadro’s number (6.02 ×
1023/mol).

In this article, the Brownian agglomeration kernel in transi-
tion regime (1 < Kn < 50, Kn = 2λ/d with λ the mean free path
of the surrounding gas and d the particle diameter) is employed.
An approximate kernel valid for the transition regime, which is
harmonic mean of the slip flow kernel (βsf) and the free molecu-
lar kernel (βfm) (Kazakov and Frenklach 1998; Otto et al. 1999;
Patterson et al. 2006), is used

βtr = βsf · βfm

βsf + βfm
, [4]

with respect to sintering, the surface area of agglomerate toward
its final area will change with rate of 1/τ s. The characteristic
sintering time τ s based on surface diffusion mechanism (Kobata
et al. 1991) is:

τs(dpp, T ) = 7.44 × 1016d4
ppT exp

(
258 × 103

RT

)
, s, [5]

where dpp is the diameter of primary particle in an agglomerate
(m), R is gas constant (J mol−1 K−1). The diameter of agglom-
erate is calculated as (Seto et al. 1997)

dm ≈ ds =
√

am

π
, [6]

where am is its surface area (m2), dm and ds are the mobility
diameter (m) and the surface area equivalent diameter (m) of an
agglomerate.

3. NUMERICAL SIMULATIONS
The gas-to-particle synthesis process is dominated by the

interaction of gas-phase nucleation, agglomeration, and sin-
tering. We extended the differentially weighted Monte Carlo
(DWMC) method to simulate this process. First, a fast version
of the DWMC method was proposed to accelerate greatly simu-
lation of two-particle event (agglomeration here). The constant-
number scheme was introduced to keep simulation particle num-
ber constant, in case the nucleation event will increase sharply
the number of simulation particles especially in the initial stage.
In order to reduce cost, the sintering and agglomeration were
uncoupled based on the finite-rate sintering idea. With respect
to sintering, two models for the size distribution of primary par-
ticles (PP) within agglomerates: the monodispersed PP model
and the polydispersed PP model (Heine and Pratsinis 2007),
were adopted, respectively, and compared with each other. Fi-
nally, a comprehensive DWMC was constructed for the process
simulation of real aerosol processes.
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1128 X. HAO ET AL.

3.1. Agglomeration and the Fast DWMC Method
In the DWMC, the weight of a simulation particle i, wi,

means that the simulation particle i represents wi real particles
having the same or similar internal variables (i.e., size, area) as
i. In order to capture the details of nanoparticle dynamics, the
following internal variables of simulation particles are directly
tracked: statistical weight w, the volume (or mass) v, the sur-
face area a, the mobility diameter dm, the diameter of primary
particles in an agglomerate dpp, the number of primary parti-
cles in an agglomerate Npp. In the monodisperse PP model, it
is assumed that primary particles in an agglomerate are same
spherical ones; while in the polydisperse PP model (Heine and
Pratsinis 2007), it is assumed that an agglomerate consists of
PPs with different size, and the representative size and number
density of each section of PP distribution are tracked directly.

The agglomeration rule presented in our previous publica-
tion (Zhao et al. 2009) is used here, which can be found in
the online supplemental information. The interacting particle
pairs of an agglomeration event are selected with probability
β ′

ij/
∑

i

∑
j,j �=i β ′

ij. Either the cumulative probabilities method
or the acceptance-rejection (AR) method can be adopted to de-
termine the coagulated pairs in the time-driven mode. In this
article, the AR method is highlighted because it may improve
computational efficiency in some cases (e.g., with narrow size
spectrum) or for some MC methods (e.g., the fast-DWMC pre-
sented below). It is worth noting that, even though the maximum
of the normalized agglomeration kernel over all possible pairs
is overestimated, the AR method can still describe the Markov
process exactly but less efficiently.

Noting that the normal-DWMC methods need double loop-
ing over all simulation particles to obtain the agglomeration
rate of a simulation particle, the waiting time, and the maxi-
mum agglomeration kernel, even though the smart bookkeeping
technology (which actually requires a regional double looping)
is used. This is why the computational cost is as high as O(N2

st),
which makes it impracticable in real processes. In the article we
adopted the fast DWMC method to avoid the double looping. In
the fast DWMC, we view the AR process as a random sampling
process from particle population, and the average agglomeration
probability of all particle pairs involved in the AR process can
approximate the real average agglomeration probability β̄ ′

ij of
all possible pairs in the dispersed system. Therefore, the waiting
time and the number of agglomeration events in the fast DWMC
is estimated as:

�tagg = pNstV∑Nst
i=1

∑Nst
j=1,�=i β ′

ij

= pNstV

Nst(Nst − 1)β̄ ′
ij

≈ pVNAR

(Nst − 1)
∑NAR

k=1 β ′
ij,k

, [7]

Nagg = integer

[
�t

(
Nst(Nst−1)

NAR∑
k=1

β ′
ij,k

)/
(2V NAR)

]
,

[8]

where β ′
ij,k is the normalized agglomeration kernel for the kth

particle pair in the AR process, NAR is the number of particles
pairs involved in the AR process. In order to estimate β ′

max
through only single looping, the weighted majorant kernel β̂ ′

ij is

introduced here. We define the weighted majorant kernel β̂ ′
tr,ij

in the transition regime as

β̂ ′
tr,ij = β̂ ′

sf,ij · β̂ ′
fr,ij

β̂ ′
sf,ij + β̂ ′

fr,ij

, [9]

where the weighted majorant kernel β̂ ′
fm,ij in the free-molecular

regime is calculated as:

β̂ ′
fm,ij = 2

√
2Kfmv

1/6
j wj

[
1 +

(
vmax

vj

)1/6

+
(

vmax

vj

)2/3

+
(

vmin

vj

)−1/2 ]
, β̂ ′

fm,ij ≥ β ′
fm,ij, [10]

and the weighted majorant kernel β̂ ′
sf,ij in the slip flow regime

as:

β̂ ′
sf,ij = 2Kcowj

[(
vmax

vj

)1/3

+ 1

]⎡
⎣(

vmin

vj

)−1/3

+ 1 + 2.514

×
(π

6

)1/3
λv

−1/3
j

((
vmin

vj

)−2/3

+1

)⎤
⎦, β̂ ′

sf,ij ≥ β ′
sf,ij.

[11]

Up to now, we can obtain the maximum of weighted majorant
kernel (β̂ ′

max) through only single looping. In such a way, the
computational cost of the fast DWMC is reduced to O(Nst).
It is noted that in the fast DWMC method the sample from
the AR process is constrained to at least 100 pairs to ensure
computational accuracy. Section 3.4 will present the flowchart
of the simulation process.

The computational precision and cost of the fast DWMC
and normal DWMC are carefully compared and evaluated. The
two DWMC methods are applied in Brownian coagulation in
the transition regime (initial number concentration N0 = 1017

m−3, initial monodisperse particle diameter d0 = 3 × 10−9 m,
reactor temperature T = 1473 K, time period t = 1000τ c) and
agglomeration is only considered in this case. Figure 1 (left)
shows that the cost of normal DWMC (with smart bookkeeping
technology) is as high as O(N2

st), while for the fast DWMC
it is only proportional to Nst. Figure 1 (right) shows that the
mobility diameter of agglomerates from the normal DWMC
and fast DWMC. It is found the fast DWMC can achieve some
dozens of speedup ratio. At the same time, the computational
accuracy is guaranteed very favorably.
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MONTE CARLO SIMULATION OF NANOPARTICLE PREPARATION 1129

FIG. 1. Comparison between the normal DWMC and fast DWMC: compu-
tational time (left); mobility diameter of agglomerates (right). (Color figure
available online.)

3.2. Gas Phase Nucleation and Constant-Number
Scheme

Within each time step, a nucleation event is implemented
until the concentration of precursor is too low to produce enough
TiO2 nuclei, for example, at the end of the aerosol reactor.
One simulation particle k is used to represent the new particles
generated from the gaseous precursor within �t and V . It is
considered that all of nuclei are spherical primary particles with
volume of v0, diameter of d0, area of a0. Their mobility diameter
dm = d0, the diameter of primary particles dpp = d0, the number
of primary particles npp = 1. The simulation particle k newly
produced has the same internal variables with these real nuclei,
and its weight is wk = k(t)Cpre(t)NA�tV . Because nucleation
event results in net depletion of gas precursor, the molecular
concentration of gas precursor is updated as C∗

pre = Cpre(t) −
k(t)Cpre(t)�t after each time step.

It is known that nucleation is dominant in the initial stage
of synthesis processes because here the nucleation rate is much
faster than the agglomeration rate and sintering rate. Nucleation
will continue to increase simulation particle number if no other
action is taken. The massive simulation particles will burden
computation cost of MC simulation further. The constant num-
ber scheme (Lin et al. 2002) is employed in this simulation to
recovery the number of simulation particles by contracting the
physical volume represented by the simulation while remain-
ing the mass concentration unaffected. In the scheme, when the
number of simulation particles exceeds the prespecified upper
limit, a particle i selected at random is replaced by the new sim-
ulation particle k representing the TiO2 nuclei. As a result, the
volume of computational domain is reduced to:

V ∗ = V

(
1 − wimi∑Nst

n=1 wnmn + wkmk

)
. [12]

3.3. Sintering and Monodispersity or Polydispersity of
Primary Particles

In the gas-to-particle synthesis processes, sintering and ag-
glomeration are two key mechanisms that affect the size and

morphology of particles. Because sintering may change the col-
lision diameter and other interval variables of each simulation
particle, the agglomeration rate of each particle pair should be
recalculated after each time interval. In order to avoid it, we em-
ploy the finite-rate sintering methodology (Rosner and Yu 2001)
to uncouple agglomeration and sintering. Within one time in-
terval only agglomerated particles are thought to coalesce from
their last agglomeration event to the current time level. This
measure thus amounts to that sintering is uncoupled with other
events during this time (�tsin). The measure may introduce some
computational error, however will save computational time
significantly.

The rate of surface area due to sintering, da/dt , is approx-
imately described by the following equation (Koch and Fried-
lander 1990):

da

dt
= − (a − afinal)

τs
. [13]

The monodispersed PP model assumes that agglomerate con-
sists of equal-sized primary particles, which conflicts with ex-
perimental measurements. Provided that τ s is constant over a
sufficiently short time step �tsin, the new surface area of particle
i after a sintering event is calculated according to the integrated
form of Equation (13):

if ai > ai,final, a∗
i = ai exp

(
− �tsin

τs
(
T , dppi

)
)

+ ai,final

[
1 − exp

(
− �tsin

τs
(
T , dppi

)
)]

. [14]

Because sintering has no effect on the volume (or mass) of the
agglomerate, knowing the new surface area ai

∗, the diameter of
primary particles (d∗

ppi) after sintering is determined by 6vi/ai
∗,

its number n∗
ppi is vi/(πd∗

ppi
2). The mobility diameter of the

agglomerate (d∗
mi) is (ai

∗/π )1/2.
Heine and Pratsinis (2007) have proposed the polydisperse

PP model to capture internal inhomogeneous structure of ag-
glomerate due to sintering. The polydisperse PP model was
integrated into the PB-MC method to describe the detailed evo-
lution of agglomerate and primary particle distribution. It is
considered primary particles within agglomerates satisfy poly-
dispersed distribution. That is, an agglomerate is composed of
unequally sized PPs, and the size distribution of PPs is classi-
fied by specific rule, such as logarithmic rule (150 bins) in this
article, in which the smallest PP size is given by the smallest
agglomerates (d0 = 0.65 nm), and the maximum PP size is that
of the fully coalesced agglomerate. It is assumed that the PPs
in a same bin have same size. The polydisperse PP distribu-
tion within an aggregate k with volume vagg,k and surface area
aagg,k is discretized into Ns,pp bins, resulting in the following
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1130 X. HAO ET AL.

conservation relations:

vagg,k =
Ns,pp∑
l=1

(npp,l,kvpp,l,k); aagg,k =
Ns,pp∑
l=1

(npp,l,kapp,l,k), [15]

where the lth bin is characterized by representative volume
vpp,l.k, area app,l,k and number npp,l,k. It is considered that the
sintering process has no effect on the scope of PP distribution,
however alters the PP number of each bin.

The PBE for the number of primary particles is constructed
to obtain the evolution of size distribution of primary particles
within agglomerates (Heine and Pratsinis 2007):

dnpp,l,k

dt
=

(
dnpp,l,k

dt

)
loss

+
(

dnpp,l,k

dt

)
gain

[16]

(
dnpp,l,k

dt

)
gain

= −vpp,l−1,k

vpp,l,k

(
dnpp,l−1,k

dt

)
loss

, [17]

(
dnpp,l,k

dt

)
loss

= −npp,l,k

τsin,l

· app,l,k − afinal,k/nmono
pp,l,k

app,l,k − app,l+1,kvpp,l,k/vpp,l+1,k

,

[18]

where afinal,k is the surface area of the sphere after complete
coalescence of k, τ sin,l is the characteristic sintering time de-
pendent of the lth PP size, nmono

pp,l,k = vagg,k/vpp,l,k . Solving the
above equations can help us obtain the time evolution of ag-
glomerates and its internal primary particles size distributions.
Finally, after a sintering event the number of PPs of bin l within
an agglomerate k could be updated as

n∗
pp,l,k = npp,l,k − (�npp,l,k)loss + (�npp,l,k)gain. [19]

The surface area and mobility diameter of the agglomerate k is
calculated as

a∗
agg,k =

Ns,pp∑
l=1

[
πn∗

pp,l,kd
2
pp,l,k

]
; d∗

m,k =
√

a∗
agg,k/π. [20]

3.4. Scheme of PBMC Simulation Process
The basic frame of the PB-MC for simultaneous nucleation,

agglomeration, and sintering was: within a well-designed time
step, the three events were uncoupled and then can be described
separately. First, the waiting time between two successive ag-
glomeration events for a simulation particle (�tagg) was cal-
culated, and the time step �t was constrained to reasonable
time scope to make the uncoupling assumption be reasonable
on the whole, then possible agglomeration events, nucleation
event, and sintering events were determined in serials. Detailed
scheme can be found in the online supplemental information.

4. SIMULATION RESULTS
Nakaso et al. (2001) measured the size distribution of TiO2

agglomerates and primary particles produced in a plug-flow re-
actor with an inner diameter of 13 mm and a length of 1.5 m.
The reactor is placed in a single controllable electric furnace
made of LaCrO3 heating elements. The heating part is between
0.45 m and 0.75 m, which allows the heated gas to cool to room
temperature before leaving the reactor. In this experiment, TTIP
gas precursor with concentration of 7.679 × 10−7 mol/l enters
into the reactor with rate of 2 l/min. A set-point temperature T f

is maintained in the middle of reactor. The length-dependent re-
actor temperature, T(l), is simulated by CFD software utilizing
experimental measurements of Seto et al. (1997) as boundary
condition. Figure 2 shows experimental measurements by Seto
et al. (1997) and CFD simulation results. Gas temperature at ax-
ial centerline of reactor is employed in the PB-MC simulations.

The nanoparticles are considered to be fully entrained by gas
stream, i.e., the axial velocity V (l) of nanoparticles is assumed
same with the axial gas flow velocity at the length l, which is
shown in Figure 2.

Simulation results are compared with experimental results
and numerical results from the 2-D discrete-sectional (DS)
method (Nakaso et al. 2001). Figures 3 (monodisperse PP model
for sintering) and 4 (polydisperse PP model for sintering) show
the evolution of agglomerate size distribution (ASD) and pri-
mary particle size distribution (PPSD) when T f = 1200◦C. At
the forepart of the reactor, the concentration of small size ag-
glomerates and primary particles is high due to nucleation, and
tend to decrease due to agglomeration and sintering, respec-
tively. At the outlet, both ASD and PPSD present log-normal
distribution. The final products predicted by the MCs have sim-
ilar geometric mean diameter, standard deviation of agglomer-
ates, and number concentration with the experimental results.
With respect to the monodisperse and polydisperse PP models,
the simulation results exhibit only a little difference for ASD,
while larger difference for PPSD. Both the monodisperse and

FIG. 2. Temperature profile and gas velocity in the plug-flow aerosol reactor.
(Color figure available online.)
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MONTE CARLO SIMULATION OF NANOPARTICLE PREPARATION 1131

FIG. 3. Monodisperse model results: the change of size distribution of TiO2

agglomerates (left) and primary particles (right) with l. (Color figure available
online.)

polydisperse PP models can predict the mean PP diameter well;
however, the monodisperse PP model predicts a larger number
concentration of PPs and a smaller geometric standard devia-
tion of PPs. When the polydispersed PP model is used, number
concentration, mean diameter, and deviation of PPs agree bet-
ter with experimental results. Generally, the polydisperse PP
model has advantage in numerical precision compared with the
monodispersed PP model.

In addition to measurement errors, the discrepancy between
PB-MC simulation results and experimental measurements may
be due to: (1) the MC does not consider condensation and dif-
fusional wall deposition (Park and Rogak 2003); (2) the inho-
mogeneity of temperature and concentration profiles is not con-
sidered, and the modeled temperature and gas velocity profiles
deviate from experimental measurements; (3) the used kernel
models (especially τ s) may not be accurate for the case (Buesser
et al. 2011); (4) surface growth will narrow the size distribution
in the initial stage, which is not included in this MC (Tsantilis
and Pratsinis 2004).

In order to identify the competition between nucleation,
agglomeration, and sintering, the characteristic agglomeration
rate nagg (the number of particles taking part in agglom-
eration events in unit time and unit volume, nagg = Nm

(Nm−1)β(dam,g, dam,g)/2, m−3·s−1, where Nm is the number
concentration of agglomerates) and the characteristic nucleation

FIG. 4. Polydisperse model results: the change of size distribution of TiO2

agglomerates (left) and primary particles (right) with l. (Color figure available
online.)

FIG. 5. The trends of nnucl and nagg, τ c and τ s with l (1200◦C). (Color figure
available online.)

rate nnucl (the number of particles produced from gas phase
reaction in unit time and unit volume, nnucl = k(t)Cpre(t)NA,
m−3·s−1) are calculated real-timely to identify competi-
tion between them. The characteristic agglomeration time
(τc = 1/Nmβ(dam,g,dam,g), which is defined here as the waiting
time of particles both with mobility diameter of dam,g), and
the characteristic sintering time τ s of an agglomerate having
PP diameter of dpp,g are also compared to measure which
dominates the size and morphology of agglomerates (Figure 5).
The length-dependent agglomeration number concentration
(Nam), geometric mean mobility diameter (dam,g), geometric
standard deviation (σ am,g), and surface area (a) are shown in
Figure 6. Figure 7 presents the evolution of primary particle
number concentration (Npp), geometric mean diameter (dpp,g),
and geometric standard deviation (σ pp,g).

FIG. 6. The moments of size distribution of agglomerates (1200◦C). (Color
figure available online.)
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1132 X. HAO ET AL.

FIG. 7. The moments of size distribution of primary particles (1200◦C). (Color
figure available online.)

As shown in Figure 5, the nucleation is dominant in the
initial stage; in the cooling part the agglomeration event
prevails over the nucleation; the sintering becomes active in
the high-temperature part. It is seen in Figures 5–7 that: (1)
in the initial stage, high concentration of precursor results in
large number of TiO2 monomers formed by nucleation. On the
other hand, both the reactor temperature and particle number
concentration are low, resulting in negligible agglomeration
rate and sintering rate. Thus it will lead to large amount of
monomers with diameter d0. dam,g and dpp,g stay stable as d0,
Nam and Npp continuously increase; (2) in the high-temperature
part, sintering becomes active because of the high temperature
and rather small PP diameter. The interaction of nucleation,
agglomeration, and sintering will affect the diameter and
concentration of particles. Depending on temperature profile,

FIG. 8. Trends of characteristic agglomeration rate and nucleation rate at
different temperatures (800◦C, 1200◦C) with l. (Color figure available online.)

FIG. 9. Trends of characteristic agglomeration time and sintering time at
different temperatures (800◦C, 1200◦C) with l. (Color figure available online.)

number concentration, and other environmental variables,
sintering prevails over agglomeration within some regions,
while agglomeration is more dominant within other regions; as
a whole, dpp,g and dam,g increase significantly, while Nam and
Npp start to decrease; (3) in the cooling part, the carrier gas
cools down, leading to almost no nucleation and sintering, ag-
glomeration “defeats” other events. Therefore, dam,g continues
to increase, Nam will decrease, dpp,g and Npp will stay stable.

Figures 8 and 9 show the mechanism competition at different
temperature. Even though Figures 8 and 9 show similar trend
at different T f, temperature history is one of the most important
factors in the synthesis process. When T f increases, nucleation
rate is accelerated, resulting in more rapid decrease of precursor
concentration. At the same time, agglomeration dominates in
advance. With a higher T f, the dominate region of sintering is
enlarged. At T f = 800◦C, it is found that sintering almost has
no dominate region.

As shown, when T f increases, particles are formed earlier
from gas-phase nucleation process on average, which means
that particles will experience longer heated history and higher
temperature, resulting in smaller agglomerates and bigger pri-
mary particles because of more severe sintering. On the other
hand, a higher T f implies faster velocity of carrier gas, which
leads to opposite effect. The interaction of these two aspects
can be further studied to identify the effect of temperature on
particle diameter and morphology.

5. CONCLUSION
The synthesis process of TiO2 nanoparticles through thermal

decomposition of TTIP in aerosol reactor as an example was
simulated via the differently weighted Monte Carlo method.
Particular attention in this article was paid to extending DWMC
method to simulate simultaneous nucleation, agglomeration,
and sintering in real aerosol processes. In order to improve
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MONTE CARLO SIMULATION OF NANOPARTICLE PREPARATION 1133

computational efficiency, we used finite-rate sintering method
(Rosner and Yu 2001) to uncouple agglomeration and sintering;
on the other hand, we approximated mean agglomeration kernel
by the mean of all agglomeration kernels of particle pairs
involved in the acceptance–rejection process and estimated the
maximum agglomeration kernel from the majorant kernel to
avoid double looping over all simulation particles in normal
PB-MC method. In order to constrain the drastically increase
in simulation particle number due to nucleation events, the idea
of constant-number method (Smith and Matsoukas 1998; Lin
et al. 2002) was employed to keep simulation particle number
constant. In order to capture the structural inhomogeneity of
agglomerate particles, we adopted the polydisperse primary
particle model (Heine and Pratsinis 2007) for sintering to
calculate more realistic primary particle size distribution. The
predicted results are satisfactory on the whole. The efficient
PB-MC is customized for the gas-to-particle synthesis process
and demonstrates its potential in real aerosol processes.
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