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Multi-Monte Carlo (MMC) method does not correctly treat the results of coagulation event between two
differentially-weighted simulation particles, resulting in comparatively large error in predicting the evolution
of particle size distribution. This study corrected the consequential treatment of coagulation event, satisfying
the basic laws of mass conservation and number depletion and then resulting in good prediction for particle
size distribution. The corrected MMC method can complete with any available Monte Carlo methods with
respect to computational accuracy.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

Among many kinds of solution for population balance modeling,
Monte Carlo (MC) method has attracted more and more attentions
because of its simplicity, and its ability to deal with high-dimension-
ality problems in a straightforward manner, and, more importantly,
their stochastic and discrete nature that adapts naturally to dynamic
events which have same nature.

In order to overcome the conflict between large numbers of real
particles in a reasonably sized systems (e.g., 1020 in an aerosol reactor)
and limited CPU speed and memory capacity of common computer, a
subsystem of the total system, which contains 104 –107 real particles,
is simulated in most of MCs [1]. The subsystem concept indicates
simulation particles are equally weighted with value of V/Vs, where V
and Vs are volumes of the total system and the subsystem,
respectively. These equally-weighting MCs focus on how to keep the
number of simulation particles within bounds by regulating the
subsystem domain periodically (e.g., in stepwise constant volume
method [2]) or continuously (e.g., in constant number method [3]). As
we know, the statistical accuracy of MC for the time evolution of
particle size distribution (PSD) depends on not only the total number
of simulation particles but also the number of simulation particles in
each size interval. These equally-weighting MCs cause large statistical
noise for particles in those size sections where number concentration
of real particles is so low that only several simulation particles or even
no simulation particle are assigned to represent these real particles,
for example, the edges of PSD.
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Multi-Monte Carlo (MMC) method [4], which is based on time-
driven technique and has the characteristics of constant number and
constant volume, is thefirst differentially-weightingMC and is capable
of simulating the size distribution of particles over the full size range
[5]. TheMMCmethod, however, cannot correctly dealwith the result of
a coagulation event between two differentially-weighted simulation
particles (Section 2). Thus the method demonstrates comparatively
low accuracy on, especially, the moments of particle size distribution.
The paper aims to correct the consequential treatment of a coagulation
event between two differentially-weighted simulation particles to
improve computational accuracy of the MMC method.

2. The corrected multi-Monte Carlo method

The differentially-weighting scheme is usually adopted to simulate
trace species of gas or plasma in traditional direct simulation Monte
Carlo (DSMC). As for a polydispersed particle population, those
particles within a size interval may have low number density and then
can be considered as trace specie of particle population. Thus the
differentially-weighting scheme is useful for population balance in
order to simulate the size distribution of particles over the full size
range and fatigue against statistical noise of MC. In fact, once the
differentially-weighting scheme is adopted, MC is capable of simulat-
ing the dynamic evolution of the total system rather than the
subsystem. In the differentially-weighting scheme, particles having
same or similar size (i.e., in the same interval of particle size
distribution) are considered to have similar dynamic behavior and
then are represented by some simulation particles. The weight of a
simulation particle i in a size interval k, wi, is equal to Nk/Nsk, where
Nk and Nsk are the numbers of real particles and simulation particles in
size interval i, respectively. Size intervals where number density of
real particles is high have thus larger values of mean weight and
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simulation particle number than those size intervals where number
density is low.

During the time-driven simulation, the total coagulate rate of
simulation particle i is calculated as:
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where βij is the coagulation kernel between particle i with volume of
vi and particle j with volume of vj. And the time step is calculated as
Δt = α = maxi VCið Þ, where the multiplicative constant α has a value of
0.01 or less.

The process of dynamic evolution due to particle coagulation is
considered as a Markov process, and the coagulation probability of
simulation particle i within Δt and V is represented by a exponential
function: Pi(Δt)=1−exp(−VCiΔt). Since a coagulation event is related
with two particles, the occurrence probability of a coagulation event
of simulation particle iwithin Δt and V is PE,i(Δt)=1−exp(−VCiΔt/2).
Note that Pi(Δt) is approximately twice of PE,i(Δt). MC examines each
simulation particle in turn to determine whether the particle
coagulates and who is its coagulation partner according to Pi(Δt) or
PE,i(Δt).

In the original MMC method, once a random number r from a
uniform distribution in the interval [0, 1] is less than Pi(Δt), i will be
decided to coagulate. Its partner j is further determined with
probability βVij =

P
j βVij using the cumulative probabilities method or

the acceptance-rejection method. In fact, the original MMC method
allows double counting of the i–j coagulation to occur, that is, not only
can i coagulates with j via the probability Pi(Δt), but it is possible that
Fig. 1. Results for linear kernel (Case2): (a) number concentration; (b) mass c
j will coagulate with i via the probability Pj(Δt). The method halves the
weight of i (when i coagulates with j) or the weight of j (when j
coagulates with i) to treat the result of the i–j coagulation as well as
keep the total number of simulation particles constant, as follows:

the first count: wi⁎ = wi = 2; vi⁎ = vi + vj;

the second count: wj⁎ = wj = 2; vj⁎ = vi + vj;

ð2Þ

where the asterisk indicates a new value of weight or size after the
coagulation event. In fact, the MMC considers the coagulation of i and
j results in a new simulation particle with volume of (vi+vj) and
weight of (wi+wj)/2. The approximate scheme for the consequential
treatment does not have a closed mass balance for coagulation [6],
resulting in a poor PSD compared with other MCs [5,7].

As known, the total number of real coagulation events is wi×wj

once i coagulates with j. Since the total number of real particles from i
and j is (wi+wj) and one coagulation event is involved with two
particles, the mean number of real coagulation events per real particle
from i or j is

X = 2wiwj = wi + wj

� �
: ð3Þ

Note that min(wi,wj)≤Ω≤max(wi,wj), and Ω=w if wi=wj=w.
Thus, the coagulation of i and j results in a new simulation particle with
volume of (vi+vj) and weight of Ω.

In the corrected MMCmethod, the coagulation event of simulation
particle i is once counted via the probability PE,i(Δt), that is, if the
random number r is less than PE,i(Δt) the coagulation event of i is
calculated. The partner of i is similarly determined through probability
oncentration; (c) the second-order moment; (d) probability distribution.



Fig. 2. The self-preserving particle size distribution for Brownian coagulation in free-
molecular regime.
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distribution βVij =
P

j βVij. The following measure is taken to treat the
result of the i–j coagulation event: a new simulation particle with
volume of (vi+vj) and weight of Ω is stored in the position of i, and
the position of j is replaced by the last simulation particle in the
simulation particle array.

According to the consequential treatment, the occurrence of
coagulation event results in net depletion of the total number of
simulationparticles. It is necessary for theMC to restore statistical sample
in order to overcome statistical noise. When the number of simulation
particles reaches to Ns,0/2 (Ns,0 is the initial number of simulation
particle), the surviving particles are duplicated and added into
simulation particle population to restore the number of simulation
particles. As a result, the weight of each simulation particle is halved.

3. Numerical results

We first calculated three special cases in which analytical solutions
exist[8]: (1) Case1, constant kernel,βij=A; (2) Case2, sumkernel,βij=B
(vi+vj); and (3) Case3, product kernel,βij=Cvivj. Three cases start from
a monodisperse initial condition, and all of MC simulations track 1000
(for Case1) or 2000 (for Case2 and Case3) simulation particles with
same weight and same volume in the initial stage. Fig. 1(a)–(d) shows
the zero-order moment (N), the first-order moment (M), the second-
order moment (M2) of size distribution, and the probability distribu-
tion (Pk) of aggregates having k primary particles (t=τcoag, where τcoag
is the characteristic coagulation time) for the linear kernel (Case2),
and Table 1 lists the time-mean standard deviations of N, M and Pk for
all of cases, which are considered as reference for evaluating MC
methods [5] and are calculated as following
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In Eq. (4), t is the length of time-interval; Q is the total amount of
MC repetitions (Q=3 in the paper); δξ

(i) (t) is relative error of ξ (which
may be N, orM, or Pk) at time t and the i-th MC repetition.

From the results in Fig. 1 and Table 1, the corrected MMC method
has the least σPk; the corrected MMC method and the constant-N
method have the least σM; and the stepwise constant-V method has
the least σN. The corrected MMC method has a remarkable advantage
of describing N, M or Pk with respect to the original MMC method.
Note that the original MMC method performs large numerical error
for high-order moments such as the second-order moment (M2). On
the contrary, the obtained M2 from the corrected MMC method is in
very good agreement with the benchmark solution (the stepwise
constant-V method), as shown in Fig. 1(c). And it is worth noting that
the original and corrected MMC methods, which adopt the differen-
tially-weighting scheme, are capable of tracking these large-scale
aggregates (kN60 in Fig. 1(d)); here the result of the corrected MMC
method is closer to analytical solution.

A real coagulation case, Brownian coagulation in free-molecular re-
gime [9], is further simulated,whereβij=K(1/vi+1/vj)1/2 (vi1/3+vj

1/3)2.
Although the initial particle population satisfies a monodispersed
Table 1
The mean standard deviations of mass concentration, mass concentration and size distribu

Cases Time-averaged standard deviations Stepwise constant-V

Constant kernel σ ̅N(t=1000τcoag) 3.102×10−15

σ ̅M(t=1000τcoag) 0
σ ̅Pk(t=1000τcoag) 1.677×10−3

Linear kernel σ N̅(t=τcoag) 1.965×10−4

σ ̅M(t=τcoag) 0
σ ̅Pk(t=τcoag) 4.159×10−3

Product kernel σ N̅(t=τcoag) 5.398×10−4

σ ̅M(t=τcoag) 1.424×10−4

σ ̅Pk(t=τcoag) 5.126×10−3
distribution, the self-preserving PSD with less populated edges and
densely population centre will reach after a time-lag. In the self-
preserving formulation, the dimensionless particle volume is defined as
η=Nv/M, and the dimensionless distribution as ψ=Mn(v,t)/N2[10],
where n(v,t) is the particle size distribution function (PSDF) at time t.
TheMC results shown in Fig. 2 represent the average of 3MC repetitions.
The original MMC exhibits large numerical errors within the dimension-
less volume range of 0.01 –0.1, although the number density in these size
intervals is comparatively high and thus should have enough statistical
samples in theory. In fact, as for the i–j coagulation event, the original
MMCmakes large particles with number of (wi+wj)/2, which is greater
than the right value, i.e., 2wiwj/(wi+wj). The consequential treatment in
the original MMC leads to that the MMC is unable to correctly simulate
these small-scale particles and overestimates number concentration of
these large-scale particles. On the contrary, the present method
correctly treats the coagulation event between two differentially-
weighted simulation particles and then performs good precision with
respect to the dynamic evolution of not only large-scale particles but
also small-scale particles.

4. Conclusions

The original MMC method exhibits comparatively high numerical
errors, which is mainly originated from the incorrect consequential
treatment of a coagulation event. From this point, the paper overcame
the conceptual difficulty of imagining a coagulation event between
two differentially-weighted simulation particles and then correctly
dealt with the result of a coagulation event, satisfying the basic laws of
mass conservation and number depletion and then resulting in good
prediction for particle size distribution. The corrected MMC method
can further applied in multivariate and multidimensional population
balance modelling.
tion in several MC methods.

Constant-N Time-driven DSMC MMC The corrected MMC

2.097×10−2 2.106×10−2 4.803×10−2 4.648×10−2

0 7.648×10−3 1.056×10−1 0
1.633×10−3 1.695×10−3 2.097×10−3 1.404×10−3

1.006×10−2 2.019×10−2 1.238×10−2 8.776×10−3

0 1.530×10−3 1.366×10−2 0
3.306×10−3 5.633×10−3 2.704×10−3 2.134×10−3

9.609×10−3 1.886×10−2 6.733×10−3 6.307×10−3

0 3.321×10−4 1.676×10−2 0
2.652×10−3 3.532×10−3 1.709×10−3 1.490×10−3
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