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Abstract

In the interest of decreasing computation cost and increasing computation precision

of Monte Carlo method for general dynamics equation (GDE), a new multi-Monte

Carlo (MMC) method for particle coagulation is prompted, which has characteristic

of time-driven, constant-number and constant-volume Monte Carlo technique. The

paper has described detailedly the scheme of MMC method, including the setting of

time step, the choice of coagulation partner, the judgment the occurrence of coagulation

event, and the consequential treatment of particle coagulation event. MMC method is

validated by five special coagulation cases: (1) constant coagulation kernel of monodis-

perse particles; (2) constant coagulation kernel of exponential polydisperse particle dis-

tribution; (3) linear coagulation kernel of exponential polydisperse particle distribution;

(4) quadratic coagulation kernel of exponential polydisperse particle distribution; (5)

Brownian coagulation kernel of log-normal polydisperse particles in the continuum

regime. The simulation results of MMC method for GDE agree with analytical solution

well, and its computation cost is low enough to apply engineering computation and gen-

eral scientific quantitative analysis.
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1. Introduction

Solid particles (or droplets) coagulation is an important mechanism in both

nature and engineering, including formation and evolvement of air aerosols

and emulsion droplets, manufacture of nanoparticle agglomerates. Because

many important properties such as light scattering, electrostatic charging, tox-

icity, radioactivity of suspended particles, sediment and capturing strategy de-
pend on their size distribution, the time evolution of size distribution due to the

particle coagulation is of fundamental interest and a key issue (see [1]). Particle

size distribution (PSD) along with time is described by general dynamics equa-

tion (GDE), which takes account of the physical processes such as coagulation,

condensation/evaporation, nucleation, breakage and deposition (see [2]). So

GDE is a key point describing those physical events of particulate matter.

The paper focuses on algorithm solving GDE for particle coagulation, where

GDE for particle coagulation is as follows:

dnpðv; tÞ
dt

¼ 1

2

Z v

0

bðv� u; uÞnpðv� u; tÞnpðu; tÞdu

� npðv; tÞ
Z 1

0

bðv; uÞnpðu; tÞdu; ð1Þ

where np(v, t) is the particle size distribution function at time t, so that np(v, t)dv

is the number concentration of particles whose size range between v and v + dv

per volume unit at time t; the dimension of np(v, t) is particles/m3/m3, where

‘‘particles’’ denotes the number of particles; b(v,u) is the coagulation kernel

for two particle of volume v and u, describing the probability of a binary coag-

ulation event in unit time; the dimension of b(v,u) is m3/particles/s. The terms
on the left-hand side of Eq. (1) describes the change in the number concentra-

tion of particles of volume v with time, and the two terms on the right-hand

side describe respectively the gain and loss in number concentration due to

coagulation.

PSD is usually polydisperse and spans widely, for example, pulverized coal

fly ash particle formation is accurately described as a tri-modal PSD that in-

cludes a submicron fume region centered at approximately 0.08lm diameter,

a fine fragmentation region centered at approximately 2.0lm diameter, and
a bulk or supermicron fragmentation region for particles of approximately

5lm diameter and greater (see [3]). In addition, some kinds of mechanisms

(such as coagulation and condensation/evaporation) have different and compli-

cated nonlinear influence on PSD. The above complication leads to a condition
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which normal numerical methods (such as finite volume method and finite dif-

ference method) are difficult to solve GDE. Nowadays the most popular

numerical methods of GDE are moments of method (see [4]), Monte Carlo

method (see [5,6]), sectional method (see [7]) and so on. Those methods have

both advantages and disadvantages. The merit of moments method is less

computation time; however its model is complicated and it assumes special par-
ticle initial size distribution. In addition there is no information about the

history of each particle which collides to form a bigger particle. Sectional

method has a receivable computation cost and computation precision, how-

ever, sectional representation results in very complex algorithms and it is

difficult to handle multi-component, more-dimensional, chemical reaction

and coating, etc. Monte Carlo method are time-consuming comparatively,

whereas it can gain information about history, trajectory crossing and internal

structure of particles; the Monte Carlo algorithms for solving polydisperse and
multi-component particle GDE are easily programmed even considering

restructuring, coating, chemical reaction and fractal aggregation. With more

and more strong computer power, simulation with some 104–107 particles is

possible on fast PCs, which relieves greatly the contradiction of expensive com-

putation. So Monte Carlo methods are adapted more and more in solving

GDE.

Many researchers have investigated Monte Carlo method for solving GDE.

To sum up, MC method can be divided into two classes according to approach
of time-step setting: one is referred to as ‘‘time-driven’’ Monte Carlo, which

takes into account all of possible event such as coagulation and breakage with-

in a special adjustable time step, and time step must be less than or equal to

minimum time in which every possible event takes place once for every simu-

lation particle; the other more common Monte Carlo is called ‘‘event-driven’’

Monte Carlo. In general especial events are implemented stochastically with

probabilities derived from the mean-field rates of the corresponding process.

In simulation of event-driven MC, a single event is selected to occur, and the
time is advanced by an appropriate increment. In contrast to time-driven

MC, this MC does not need explicit time discretization and its time step, which

is calculated during the simulation, adjusts itself to the rates of the various

event processes. On the other hand, MC method can also be classified into

two general classes according to whether the number of simulation particles

and simulation volume are changed along with the evolvement of time. The

first approach is to track a constant volume and thus grow or shrink the num-

ber of simulation particle in direct proportion to the number concentration of
the physical system, while conserving the mass, this method is sometimes re-

ferred to as ‘‘constant-volume MC’’, which cannot maintain constant statistical

accuracy. The second class is ‘‘constant-number MC’’ prompted by Matsoukas

etc. [8–10], in which the number of simulation particles is kept constant and

the simulation volume is continuously adjusted so as to contain the same
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number of particles. The constant-number method maintains constant statisti-

cal accuracy and can simulate growth over arbitrarily long times with a finite

number of simulation particles. Nevertheless, it is difficult for constant-number

MC to take account of space dispersion of size function because of the expan-

sion and contraction of the simulated subsystem volume. Furthermore, ‘‘event-

driven’’ Monte Carlo method can hardly consider particle Lagrangian track-
ing, which is important in coupling with two-phase Euler/Lagrange model to

investigate particle-flow interaction and particle motion.

In order to decrease computation cost and increase computation accuracy of

Monte Carlo method for solving general dynamics equation (GDE) for coag-

ulation, a new multi-Monte Carlo (MMC) method for coagulation is

prompted. Firstly the MMC method is described detailedly; and then five spe-

cial cases for which complete or partial analytical solutions exist are chosen to

validate the MMC method; lastly some conclusions is drawn.
2. Description for multi-Monte Carlo method

In the first place, fictitious particles, of which the number is far less than real

particles, are created by handling real particles. Those real particles which have

same or similar volume can be considered to have the same properties and

hence the same behaviors. Those real particles can be represented by one or
several simulation particles (naming ‘‘weighted fictitious particle’’) according

to local particle size distribution. One fictitious particle, whose serial number

is i, is endowed with a transform-weight ‘‘kwti’’, and the physical meaning of

kwti is the number of local real particles. Since less number of fictitious parti-

cles (or called simulation particles) is tracked and evolved circularly, computa-

tion cost of MMC method will decrease accordingly, especially when the

number of real particles is large within computational domain. Furthermore,

within time step Dt which is set real-timely, ‘‘time-driven’’ Monte Carlo method
is developed to consider possible binary coagulation events. Although the total

number of real particles cuts down continuously along with the occurrence of

the coagulation event, the total number of fictitious particles is constant by

means of adapting the transform-weight kwti of fictitious particle i. In addition,

the volume of computational domain is conserved. Those techniques are inte-

grated a whole, which is named with multi-Monte Carlo (MMC) method. In

fact, MMC method here has characteristic of the time-driven, constant-number

and constant-volume technique. The key points of MMC method include the
real-time setting of time step, the choice of fictitious coagulation partner, the

judgement of the occurrence of coagulation event, and consequential treatment

of particle coagulation, which are described detailedly in the following text.

Flow chart and schematic diagram of MMC method for particle coagulation

is shown in Fig. 1.
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Fig. 1. Flow chart and schematic diagram of multi-Monte Carlo method.
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2.1. Setting of time step

On the one hand, time step is supposed to be small enough compared to time

scales of physical processes in order to allow an accurate integration, on the

other hand it is expected to be large enough to avoid a prohibitive computa-

tional cost. The rule of setting of time step is as follows: within time step Dt,
the number of coagulation event of any fictitious particle must be less than

or equal to 1. The rule can assure that every coagulation event can be counted.

Within computational domain V, one assumes the number of real particles is N

and the number of fictitious particles as Nf. The coagulation time of fictitious
particle i (occurring one coagulation event) is as follows:

ti;coag ¼ 1
XN f

j¼1;j 6¼i

bi;j �minðkwti; kwtjÞ;
,

ð2Þ

where bi,j is the coagulation kernel (or collision kernel) for particle i and j in a

volume V, represented the probability of a binary coagulation in unit time.

Time step Dt should be less than or equal to the minimum value among the

coagulation time of any fictitious particle in MMC method, that is:

Dt 6 1 max
XN f

j¼1;j6¼i

bi;j �minðkwti; kwtjÞ
 !,

: ð3Þ

In addition, as all know, along with the occurrence of coagulation, particle

size distribution must have been changed, which makes minimum coagulation

time change. So Dt must be adjusted real-timely, not just as a fixed value.
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2.2. Coagulation event judgement

Let us note the coagulation probability ‘‘pro’’ for the occurrence of a coag-

ulation event between the tracked fictitious particle i and any other fictitious

particle in control volume V within Dt. A random number R1 from a uniform

distribution in the interval [0,1] is generated. A coagulation event is calculated
when the random number R1 becomes smaller than the coagulation probability

‘‘pro’’, i.e. if

R1 6

XN f

j¼1;i6¼j

ðbi;j � kwtjÞ � Dt ¼ pro: ð4Þ

Because of the limitation of time step setting Eq. (4), the coagulation probabil-

ity ‘‘pro’’, i.e., the right side of Eq. (5), must be less than or equal to 1. If adopt-

ing jointly both Eqs. (3) and (4) to set time step and judge the occurrence of a
coagulation event, computation cost will reach Oð2� N 2

f Þ.
To decrease computation cost, one stores the sum of possible coagulation

kernel of fictitious particle i and any other fictitious particle (see [5]), i.e.

Si ¼
XN f

j¼1;i6¼j

ðbi;j �minðkwti; kwtjÞÞ: ð5Þ

The physical meaning of Si is coagulation probability of fictitious particle i

within Dt and in V. Accordingly, the limitation of time step Eq. (3) is as

follows:

Dt 6 1=maxðSiÞ: ð6Þ
And then, the mathematic relation for judging whether or not coagulation

event occurs is:

R1 6 Si � Dt: ð7Þ
Now the computation cost reaches only OðN f þ N 2

f Þ and the storage space

of computer memory needs only O(Nf).

2.3. Choice of coagulation partner

Once coagulation event occurs, the next issue is choosing coagulation part-
ner of the tracked fictitious particle i. Firstly, the probability of fictitious par-

ticle i coagulating with any fictitious particles j is expressed as Pij = min(kwti,

kwtj) · bij · Dt. Secondly the random number R1 is still used for the determina-

tion of true coagulation partner. If the relation

Xj�1

k¼1

P ik 6 R1 6

Xj
k¼1

P ik; j 2 ½1;N f � ð8Þ
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is satisfied, it is decided that the tracked particle i coagulate with fictitious par-

ticle j.
2.4. Sequential treating of particle coagulation

The direct result of particle coagulation is that two smaller particles become
one bigger particle, and one coagulation event means subtracting one from the

sum of particles. Along with the occurrence of particle coagulation event, the

total number of real particle cuts down continuously, so does the total number

simulation particle in ordinary Monte Carlo methods. If the dimension of sam-

ple space decreases continuously, computation precision of Monte Carlo

method will decrease accordingly. In order to counter it, in Ref. [9], the domain

V and the number of tracked particles Nf are doubled when the concentration

has dropped by half. Although the evolution can carry through a long time,
computation precision cannot be conserved. Matsoukas and his cooperators

[8–10] had put forward the so-called ‘‘constant-number’’ Monte Carlo, which

was applied to event-driven Monte Carlo technique. A Monte Carlo technique

named by ‘‘constant fictitious particle number technique’’ is developed and is

coupled with time-driven Monte Carlo technique and constant-volume Monte

Carlo technique in this paper.

Every fictitious particle represents some real particles, where fictitious par-

ticle ‘‘A’’ and ‘‘B’’ corresponds respectively to collection ‘‘a’’ and ‘‘b’’ of real
particles. When the tracked fictitious particle ‘‘A’’ coagulates with coagulation

partner ‘‘B’’, it means, some real particles in collection ‘‘a’’(its particle number

is kwtA) coagulate with those in collection ‘‘b’’ (its particle number is kwtB).

The number of coagulation event is the minimum between transform-weight

kwtA and kwtB, that is, min(kwtA,kwtB). In order to conserve the total number

of fictitious particles, the tracked fictitious particle is not replaced by a new-

born fictitious particle, neither the coagulation partner is discarded. Instead

the tracked fictitious particle A and its coagulation partner B are both con-
served. Accordingly their transform-weight kwt and their volume are adjusted

to satisfy the law of conservation of mass and the rule of change of number.

Because during each time step Dt a coagulation event of particle pairs is double

counted, only some properties of the current tracked particle is changed and

there are no changes in its partner. That is, when the tracked fictitious particle

is ‘‘A’’, the following measures of three cases are taken according to difference

between ‘‘kwtA’’ and ‘‘kwtB’’:

if kwtA ¼ kwtB ðkwtAÞnew ¼ kwtA=2; ðvAÞnew ¼ vA þ vB;

if kwtA > kwtB ðkwtAÞnew ¼ kwtA � kwtB; ðvAÞnew ¼ vA;

if kwtA < kwtB ðkwtAÞnew ¼ kwtA; ðvAÞnew ¼ vA þ vB:

ð9Þ
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When the tracked fictitious particle is assigned to ‘‘B’’ in turn, the same

coagulation event ‘‘A–B’’ will be checked and its coagulation partner will be

‘‘A’’ in theory. The same measure is adopted:

if kwtB ¼ kwtA ðkwtBÞnew ¼ kwtB=2; ðvBÞnew ¼ vA þ vB;

if kwtB > kwtA ðkwtBÞnew ¼ kwtB � kwtA; ðvBÞnew ¼ vB;

if kwtB < kwtA ðkwtBÞnew ¼ kwtB; ðvBÞnew ¼ vA þ vB:

ð10Þ

Although the total number of real particles cuts down continuously along
with the occurrence of coagulation event, the total number of fictitious parti-

cles is constant by the means of adapting the transform-weight ‘‘kwt’’ of the

tracked fictitious particle, no matter how many coagulation event and how

long evolution time. The technique is named as ‘‘constant fictitious particle

number technique’’.

It is noticeable that coagulation event does not influence immediately prop-

erties and behaviors of the tracked fictitious particles and the related fictitious

particles within a time step. The influence will occur in next time step. So treat-
ing of particle coagulation should be delayed until the end of current time step,

which can be referred to Fig. 1.
3. Computational cases

Because GDE describes the evolution of particle size distribution with time,

few experiment result or even numerical simulation can be referred. In general
the best usual and effective measure of validating algorithm for GDE is com-

parison with analytical solution in some special cases.

3.1. Case 1, constant coagulation kernel of monodisperse particles, bij = A

Here A is a constant. Constant coagulation kernel indicates that the rate of

coagulation is independent of particle volume, i.e., particle size distribution.

The constant kernel reproduces the integral value behavior in the Brownian
coagulation. The initial particle size distribution is monodisperse. If one defines

N0 as the initial number of primary particles at t = 0, the total number of par-

ticles N(t) at time t is (see [5])

NðtÞ ¼ N 0=ð1þ AN 0t=2Þ: ð11Þ
And then the mean mass ðMðtÞÞ and the normalized variance (r) are given

theoretically (see [8]):

MðtÞ=M0 ¼ 1þ AN 0t=2;

r2 ¼ MðtÞ2=MðtÞ2 � 1 ¼ AN 0t=ðAN 0t þ 2Þ:
ð12Þ
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3.2. Case 2, constant coagulation kernel of exponential polydisperse particle

distribution, bij = A

In this case the initial particle size distribution is polydisperse and is repre-

sented by an exponential function:

npðv; 0Þ ¼
N 0

vg0
e
� v

vg0 ; ð13Þ

where the initial total number is N0, and the initial mean size is vg0.

Coagulation kernel constant A is chosen as the Brownian constant for aver-

age atmospheric conditions. The analytical solution of time evolution of PSD is
as follows (see [11,12]):

npðv; tÞ ¼
N 0

vg0ð1þ AN 0t=2Þ2
exp � v

vg0ð1þ AN 0t=2Þ

� �
: ð14Þ
3.3. Case 3, linear constant kernel of exponential polydisperse particle

distribution, bij = A(vi + vj)

The initial particle size distribution in both Case 3 and Case 4 is the same

with those in Case 2. Here vi and vj is respectively the volume of two coagula-

tion particles, i and j. The setting of A in both Case 3 and Case 4 is for the pur-

pose of same time scale of Case 1. The linear coagulation kernel is frequently

used to approximate turbulent gravitational coagulation, as the kernels have
about the same degree of growth with increasing particle size. The analytical

solution of time evolution of PSD is (see [11,12])

npðv; tÞ ¼ N 0

expð�AN 0vg0tÞ
v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� expð�AN 0vg0tÞ

p exp �½2� expð�AN 0vg0tÞ�
v
vg0

� �

� I1 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� expð�AN 0vg0tÞ

q v
vg0

� �
; ð15Þ

where I1 is the modified Bessel function of the first kind and the first order.

3.4. Case 4, quadratic coagulation kernel of exponential polydisperse particle

distribution, bij = Avivj

The quadratic coagulation kernel leads to critical phenomena (‘‘gelation’’)

during coagulation and its study is useful for methodological purposes. The
exact analytical solution is provided (see [12]):

npðv; tÞ ¼
N 0

vg0
exp � 1þ AN 0v2g0t

n o v
vg0

� �X1
m¼0

ðAN 0v3t=vg0Þm

ðmþ 1Þ!ð2mþ 1Þ! : ð16Þ
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3.5. Case 5, Brownian coagulation kernel of log-normal polydisperse particles in

the continuum regime

When particle diameter is so small that its Knudsen number (=k/r) is about
1, where r is the particle radius (=(3v/4p)1/3) and k is the mean free path length

of the gas molecules, particles enter into continuum regime. The coagulation
kernel for Brownian diffusion are given (see [13]):

bðu; vÞ ¼ 2kBT
3l

2þ u
v

� �1=3
þ v

u

� �1=3� �

¼ 2kBT
3l

ðuÞ1=3 þ ðvÞ1=3
h i 1

ðuÞ1=3
þ 1

ðvÞ1=3

" #
; ð17Þ

where kB is Boltzmann�s constant (1.38054 · 10�23JK), T is the temperature

and l is the viscosity of the medium.

The initial particle size distribution is log-normal polydisperse particle size

distribution, and in the course of particle evolution, particle size distribution

is self-preserving log-normal size distribution, that is, at any time t,

npðv; tÞ ¼
1

3v
NðtÞffiffiffiffiffiffi

2p
p

ln rðtÞ
exp � ln2½v=vgðtÞ�

18ln2rðtÞ

( )
: ð18Þ

Lee et al. [14] had gained analytical solution:

NðtÞ ¼ N 0

1þ a0KN 0t
; Z ¼ ln2rðtÞ ¼ 1

9
ln 2þ expð9Z0Þ � 2

1þ a0KN 0t

� �
;

vgðtÞ
vg0

¼
ð1þ a0KN 0tÞ � exp 9

2
Z0

� 	
2þ expð9Z0Þ�2

1þa0KN0t

h i1=2 ;

a0 ¼ 1þ expðZ0Þ; K ¼ 2kBT
3l

; Z0 ¼ ln2r0; ð19Þ

where vg(t) is the geometric number mean particle volume, r(t) is the geometric
standard deviation based on particle radius, and vg0, N0, Z0, r0 is the initial

value for vg, N(t), Z, r(t), respectively.
It is noticeable that coagulation kernel bij is generally bounded as follows:

A 6 bij 6 A(vi + vj) or Avivj.
4. Simulation

Computational conditions of five cases are listed in Table 1, where Nf is the

total number of fictitious particle. For collecting statistics properties such as



Table 1

Computational conditions for Cases 1–5

Case Parameters vg0 Bin discretization N0 Nf Time evolution (s) CPU time (s)

1 A = 10�9 1.0 Monodisperse 108 103 1000 1091

2 A = 6.405 · 10�10 0.029 200 Classes, equally spaced 106 104 �1561.3 13

3 A = 1.115 · 10�8 0.029 200 Classes, equally spaced 106 104 �1561.3 131

4 A = 3.808 · 10�7 0.029 200 Classes, equally spaced 106 104 �1561.3 401

5 r0 = 1.5, l = 1.83 · 10�7, T = 2500 1.0 200 Classes, logarithmically spaced 108 104 5 · 106 1105
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particle size distribution, polydisperse particles must explicit particle bin discre-

tization. For Cases 2–5, polydisperse particles are divided into 200 classes be-

tween the largest and smallest particle volume in the simulation. (Noting: no

information about bin discretization needs during simulating, which will avoid

numerical diffusion as possible (see [15]).)

Fig. 2 shows the comparison of the time evolution of some parameters for
Case 1 between analytical and MMC solution, including the curve of relative

total number concentration N(t)/N0 along with time t, relative geometric mean

particle mass M(t)/M0 along with t and geometric standard deviation r along

with t. Although time evolution is continued to a long times, and particle total

number decrease sharply, computation precision is conserved well because of

constant fictitious particle number. The agreement between MMC solution

and analytical solution is exact. The difference of N(t)/N0 along with t between

MMC solution and analytical solution is even less than the thickness of the line.
The results of numerical simulation for Cases 2–4 are shown in Figs. 3–5,

respectively. As we can see, the simulation result of MMC method for GDE

agrees with analytical solution well. During the evolution, PSD remains basi-

cally the exponential distribution for three cases, which is called by ‘‘self-pre-

serving’’ curve (see [13,16]).

Fig. 6(a) illustrates the evolution of the size distribution for Brownian coag-

ulation of polydisperse particles. The agreement between MMC solution and

analytical solution is mostly good. Along with the evolution of time, the peak
value of size distribution curve is descending, which means particle number
Fig. 2. The time evolution of parameters for Case 1.



Fig. 3. The time evolution of PSD for Case 2.

Fig. 4. The time evolution of PSD for Case 3.
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decreases continuously; and the location of peak is moving to right side––the

side of bigger particles, which means the particle volume is more and more big-
ger. During the evolution, the particle size distribution remains basically the



Fig. 5. The time evolution of PSD for Case 4.
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‘‘self-preserving’’ log-normal distribution (see [13,16]). However, along with

advancing of time evolution, the agreement for size distribution between

MMC solution and analytical solution becomes more and more worse. The

inapplicable measure of particle bin discretization and the insufficient number

of fictitious particles may contribute partly to it, and certain additional approx-

imations and simplifications of analytical solution may also contribute partly

to those bias. Those need validate and probe farther. The striking difference

of r in Fig. 6(b) between analytical and MMC solution inherits the difference
of size distribution in Fig. 6(a).

In order to control computation precision, ordinary Monte Carlo methods

have to increase the number of simulation particles because of decreasing real

particles and simulation particles continuously along with time evolution,

which leads to a dissatisfactory computation cost. So there is an antinomy

of computation cost and computation precision in ordinary Monte Carlo

methods. For Case 1, the simulation particle number given by literature [5]

is 103–105 at the same computational condition, and 15000 in literature [8]
for Case 4. Although no comparison about computation cost can be taken be-

cause there are no data about computation cost in literature [5,8], it can be con-

firmed that MMC method can save computation cost because of less number

of simulation particle. Computation cost of MMC method is listed in Table

1 (hardware and software environment are as follows: Athlon Xp2500+,

512M, Visual Fortran 6.0, Windows Xp professional).



Fig. 6. The comparison between analytical and MMC solution of Case 5 for (a) the time evolution

of particle size distribution (PSD); (b) N(t)/N0 � t, vg(t)/vg0 � t and r � t.
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5. Conclusion

Multi-Monte Carlo (MMC) method for general dynamics equation (GDE)

is performed in the paper. Its characteristics are as follows: handling fictitious

particles of which the number is far less than that of real particles to decrease
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computation cost, coupling ‘‘time-driven’’ Monte Carlo technique and con-

stant-number Monte Carlo technique, and conserving computational domain.

MMC method had been used to simulation five special coagulation cases. The

agreement between MMC solution and analytical solution is mostly good,

which validated computation precision of the MMC method. Furthermore

the computation cost of the MMC method is receivable for engineering appli-
cation engineering computation and general scientific quantitative analysis.

Those may make the MMC method a standard solution for solving GDE.

Computational bias of MMC methods will be advanced by means of appli-

cable measure of particle bin discretization, the apposite number of fictitious

particle and the more times of MMC simulation. The mutual relation of time

step, fictitious particle number and computation cost, computation precision

will be very significative. Those works will further go along.

MMC method can expand to take account of other event such as condensa-
tion/evaporation, nucleation, deposition, breakage, space dispersion, particle

phase properties evolution and so on. Of course some technique must be cou-

pled, for instance, cell plotting technique for space dispersion and two-phase

flow model for particle and medium velocity field. MMC method can also be

applied to consider GDE for multi-component, more-dimensional and polydis-

perse particle. Those works will be developed in the next stage.
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